Gram matrices of reproducing kernel Hilbert spaces over graphs IV. (Quadratic inequalities for graph Laplacians)
Algebra i analiz, Tome 31 (2019) no. 1, pp. 143-155.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the relationship between a graph and its subgraph from a viewpoint of functional analysis. As an application of the theory of quasi-orthogonal integrals developed by de Branges–Rovnyak and Vasyunin–Nikol'skiĭ, quadratic inequalities for graph Laplacians are given.
Keywords: graph, Laplacian, quasi-orthogonal integral.
@article{AA_2019_31_1_a7,
     author = {M. Seto and S. Suda},
     title = {Gram matrices of reproducing kernel {Hilbert} spaces over graphs {IV.} {(Quadratic} inequalities for graph {Laplacians)}},
     journal = {Algebra i analiz},
     pages = {143--155},
     publisher = {mathdoc},
     volume = {31},
     number = {1},
     year = {2019},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2019_31_1_a7/}
}
TY  - JOUR
AU  - M. Seto
AU  - S. Suda
TI  - Gram matrices of reproducing kernel Hilbert spaces over graphs IV. (Quadratic inequalities for graph Laplacians)
JO  - Algebra i analiz
PY  - 2019
SP  - 143
EP  - 155
VL  - 31
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2019_31_1_a7/
LA  - en
ID  - AA_2019_31_1_a7
ER  - 
%0 Journal Article
%A M. Seto
%A S. Suda
%T Gram matrices of reproducing kernel Hilbert spaces over graphs IV. (Quadratic inequalities for graph Laplacians)
%J Algebra i analiz
%D 2019
%P 143-155
%V 31
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2019_31_1_a7/
%G en
%F AA_2019_31_1_a7
M. Seto; S. Suda. Gram matrices of reproducing kernel Hilbert spaces over graphs IV. (Quadratic inequalities for graph Laplacians). Algebra i analiz, Tome 31 (2019) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/AA_2019_31_1_a7/

[1] Bollobás B., Modern graph theory, Grad. Texts in Math., 184, Springer-Verlag, New York, 1998 | DOI | MR | Zbl

[2] Ball J. A., Bolotnikov V., de Branges–Rovnyak spaces: basics and theory, 12 May 2014, arXiv: 1405.2980v1 [math.CA]

[3] de Branges L., “A proof of the Bieberbach conjecture”, Acta Math., 154:1–2 (1985), 137–152 | DOI | MR | Zbl

[4] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Math., Third ed., Springer, New York, 2007 | DOI | MR | Zbl

[5] Doyle P. G., Snell J. L., Random walks and electric networks, Carus Math. Monogr., 22, Math. Assoc. Amer., Washington, DC, 1984 | MR | Zbl

[6] Dym H., Linear algebra in action, Grad. Stud. Math., 78, 2nd ed., Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl

[7] Horn R. A., Johnson C. R., Matrix analysis, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl

[8] Jorgensen P. E. T., Pearse E. P. J., “A Hilbert space approach to effective resistance metric”, Complex Anal. Oper. Theory, 4:4 (2010), 975–1013 | DOI | MR | Zbl

[9] Jorgensen P. E. T., Tian F., “Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses”, J. Mach. Learn. Res., 16 (2015), 3079–3114 | MR | Zbl

[10] Jorgensen P. E. T., Tian F., “Frames and factorization of graph Laplacians”, Opuscula Math., 35:3 (2015), 293–332 | DOI | MR | Zbl

[11] Sarason D., Sub-Hardy Hilbert spaces in the unit disk, Univ. Arkansas Lecture Notes Math. Sci., 10, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York | MR | Zbl

[12] Seto M., “Composition operators induced by injective homomorphisms on infinite weighted graphs”, J. Math. Anal. Appl., 435:2 (2016), 1467–1477 | DOI | MR | Zbl

[13] Seto M., Suda S., Taniguchi T., “Gram matrices of reproducing kernel Hilbert spaces over graphs”, Linear Algebra Appl., 445 (2014), 56–68 | DOI | MR | Zbl

[14] Seto M., Suda S., Taniguchi T., “Gram matrices of reproducing kernel Hilbert spaces over graphs II. (Graph homomorphisms and de Branges–Rovnyak spaces)”, Nihonkai Math. J., 26:1 (2015), 15–29 | MR | Zbl

[15] Seto M., Suda S., “Gram matrices of reproducing kernel Hilbert spaces over graphs III”, Oper. Matrices, 11:3 (2017), 759–768 | DOI | MR | Zbl

[16] Vasyunin V. I., Nikolskii N. K., “Kvaziortogonalnye razlozheniya po dopolnitelnym metrikam i otsenki odnolistnykh funktsii”, Algebra i analiz, 2:4 (1990), 1–81 | MR | Zbl

[17] Vasyunin V. I., Nikolskii N. K., “Operativnye mery i koeffitsienty odnolistnykh funktsii”, Algebra i analiz, 3:6 (1991), 1–75 | MR