Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_1_a7, author = {M. Seto and S. Suda}, title = {Gram matrices of reproducing kernel {Hilbert} spaces over graphs {IV.} {(Quadratic} inequalities for graph {Laplacians)}}, journal = {Algebra i analiz}, pages = {143--155}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2019}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_1_a7/} }
TY - JOUR AU - M. Seto AU - S. Suda TI - Gram matrices of reproducing kernel Hilbert spaces over graphs IV. (Quadratic inequalities for graph Laplacians) JO - Algebra i analiz PY - 2019 SP - 143 EP - 155 VL - 31 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2019_31_1_a7/ LA - en ID - AA_2019_31_1_a7 ER -
M. Seto; S. Suda. Gram matrices of reproducing kernel Hilbert spaces over graphs IV. (Quadratic inequalities for graph Laplacians). Algebra i analiz, Tome 31 (2019) no. 1, pp. 143-155. http://geodesic.mathdoc.fr/item/AA_2019_31_1_a7/
[1] Bollobás B., Modern graph theory, Grad. Texts in Math., 184, Springer-Verlag, New York, 1998 | DOI | MR | Zbl
[2] Ball J. A., Bolotnikov V., de Branges–Rovnyak spaces: basics and theory, 12 May 2014, arXiv: 1405.2980v1 [math.CA]
[3] de Branges L., “A proof of the Bieberbach conjecture”, Acta Math., 154:1–2 (1985), 137–152 | DOI | MR | Zbl
[4] Cox D., Little J., O'Shea D., Ideals, varieties, and algorithms. An introduction to computational algebraic geometry and commutative algebra, Undergraduate Texts in Math., Third ed., Springer, New York, 2007 | DOI | MR | Zbl
[5] Doyle P. G., Snell J. L., Random walks and electric networks, Carus Math. Monogr., 22, Math. Assoc. Amer., Washington, DC, 1984 | MR | Zbl
[6] Dym H., Linear algebra in action, Grad. Stud. Math., 78, 2nd ed., Amer. Math. Soc., Providence, RI, 2013 | DOI | MR | Zbl
[7] Horn R. A., Johnson C. R., Matrix analysis, Cambridge Univ. Press, Cambridge, 1990 | MR | Zbl
[8] Jorgensen P. E. T., Pearse E. P. J., “A Hilbert space approach to effective resistance metric”, Complex Anal. Oper. Theory, 4:4 (2010), 975–1013 | DOI | MR | Zbl
[9] Jorgensen P. E. T., Tian F., “Discrete reproducing kernel Hilbert spaces: sampling and distribution of Dirac-masses”, J. Mach. Learn. Res., 16 (2015), 3079–3114 | MR | Zbl
[10] Jorgensen P. E. T., Tian F., “Frames and factorization of graph Laplacians”, Opuscula Math., 35:3 (2015), 293–332 | DOI | MR | Zbl
[11] Sarason D., Sub-Hardy Hilbert spaces in the unit disk, Univ. Arkansas Lecture Notes Math. Sci., 10, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York | MR | Zbl
[12] Seto M., “Composition operators induced by injective homomorphisms on infinite weighted graphs”, J. Math. Anal. Appl., 435:2 (2016), 1467–1477 | DOI | MR | Zbl
[13] Seto M., Suda S., Taniguchi T., “Gram matrices of reproducing kernel Hilbert spaces over graphs”, Linear Algebra Appl., 445 (2014), 56–68 | DOI | MR | Zbl
[14] Seto M., Suda S., Taniguchi T., “Gram matrices of reproducing kernel Hilbert spaces over graphs II. (Graph homomorphisms and de Branges–Rovnyak spaces)”, Nihonkai Math. J., 26:1 (2015), 15–29 | MR | Zbl
[15] Seto M., Suda S., “Gram matrices of reproducing kernel Hilbert spaces over graphs III”, Oper. Matrices, 11:3 (2017), 759–768 | DOI | MR | Zbl
[16] Vasyunin V. I., Nikolskii N. K., “Kvaziortogonalnye razlozheniya po dopolnitelnym metrikam i otsenki odnolistnykh funktsii”, Algebra i analiz, 2:4 (1990), 1–81 | MR | Zbl
[17] Vasyunin V. I., Nikolskii N. K., “Operativnye mery i koeffitsienty odnolistnykh funktsii”, Algebra i analiz, 3:6 (1991), 1–75 | MR