Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2019_31_1_a4, author = {V. Nesterov}, title = {Subsystem subgroups generated by short root subgroups in a group of type $\mathrm{F}_4$}, journal = {Algebra i analiz}, pages = {92--107}, publisher = {mathdoc}, volume = {31}, number = {1}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2019_31_1_a4/} }
V. Nesterov. Subsystem subgroups generated by short root subgroups in a group of type $\mathrm{F}_4$. Algebra i analiz, Tome 31 (2019) no. 1, pp. 92-107. http://geodesic.mathdoc.fr/item/AA_2019_31_1_a4/
[1] Burbaki N., Elementy matematiki. Gruppy i algebry Li, Gl. IV–VI, Mir, M., 1972 | MR
[2] Vavilov N. A., “O geometrii dlinnykh kornevykh podgrupp v gruppakh Shevalle”, Vestn. Leningr. un-ta. Ser. 1, 1988, no. 1, 8–11 | MR | Zbl
[3] Vavilov N. A., “Vzaimnoe raspolozhenie dlinnoi i korotkoi kornevykh podgrupp v gruppe Shevalle”, Vestn. Leningr. un-ta. Ser. 1, 1989, no. 1, 3–7 | MR
[4] Vavilov N. A., “Podgruppy grupp Shevalle soderzhaschie maksimalnyi tor”, Tr. Leningr. mat. o-va, 1, 1990, 64–109 | MR
[5] Vavilov N. A., Pevzner I. M., “Troiki dlinnykh kornevykh podgrupp”, Zap. nauch. semin. POMI, 343, 2007, 54–83 | MR
[6] Dynkin E. B., “Poluprostye podalgebry poluprostykh algebr Li”, Mat. sb., 30:2 (1952), 349–462 | MR | Zbl
[7] Kondratev A. S., “Podgruppy konechnykh grupp Shevalle”, Uspekhi mat. nauk, 41:1 (1986), 57–96 | MR | Zbl
[8] Nesterov V. V., “Pary korotkikh kornevykh podgrupp v gruppe Shevalle”, Dokl. RAN, 357:3 (1997), 302–305 | MR | Zbl
[9] Nesterov V. V., “Pary korotkikh kornevykh podgrupp v gruppe Shevalle tipa $\mathrm{G}_2$”, Zap. nauch. semin. POMI, 281, 2001, 253–273 | MR | Zbl
[10] Nesterov V. V., “Porozhdenie par korotkikh kornevykh podgrupp v gruppakh Shevalle”, Algebra i analiz, 16:6 (2004), 172–208 | MR
[11] Nesterov V. V., “Teoremy reduktsii dlya troek korotkikh kornevykh podgrupp v gruppakh Shevalle”, Zap. nauch. semin. POMI, 443, 2016, 106–132 | MR
[12] Steinberg R., Lektsii o gruppakh Shevalle, Mir, M., 1975 | MR
[13] Carter R. W., Simple groups of Lie type, Pure Appl. Math., 28, Sohn Wiley, London, 1972 | MR
[14] Cooperstein B. N., “Subgroups of the group $\mathrm{E}_{6}(q)$ which are generated by root subgroups”, J. Algebra, 46:2 (1977), 355–388 | DOI | MR | Zbl
[15] 15, no. 1, 1983, 1–45 | DOI | MR | MR | Zbl
[16] Cooperstein B. N., “Geometry of long root subgroups in groups of Lie type”, Proc. Sympos. Pure Math., 37, Amer. Math. Soc., Providence, RI, 1980, 243–248 | DOI | MR
[17] Di Martino L., Vavilov N. A., “$(2; 3)$-generation of $SL(n; q)$. I: Cases $n = 5; 6; 7$”, Comm. Algebra, 22:4 (1994), 1321–1347 ; “$(2; 3)$-generation of $SL(n; q)$. II. Cases $n\ge 8$”, 24:2 (1996), 487–515 | DOI | MR | Zbl | DOI | MR | Zbl
[18] Kantor W. M., “Subgroups of classical groups generated by long root elements”, Trans. Amer. Math. Soc., 248:2 (1979), 347–379 | DOI | MR | Zbl
[19] Li Shang Zhi, “Maximal subgroups containing root subgroups in finite classical groups”, Kexue Tongbao, 29:1 (1984), 14–18 | MR | Zbl
[20] Li Shang Zhi, “Maximal subgroups in P$\Omega(n,F,Q)$ with root subgroups”, Sci. Sinica Ser. A, 28:8 (1985), 826–838 | MR | Zbl
[21] Li Shang Zhi, “Maximal subgroups containing short root subgroups in $\mathrm{PSp}(2n,\mathbb{F})$”, Acta Math. Sinica (N.S.), 3:1 (1987), 82–91 | DOI | MR | Zbl
[22] Liebeck M. W., Seitz G. M., “Subgroups generated by root elements in groups of Lie type”, Ann. Math., 139:2 (1994), 293–361 | DOI | MR | Zbl
[23] Stark B. S., “Some subgroups of $\Omega(V)$ generated by groups of root type 1”, Illinois J. Math., 17:4 (1973), 584–607 | MR | Zbl
[24] Stark B. S., “Some subgroups of $\Omega(V)$ generated by groups of root type”, J. Algebra, 29:1 (1974), 33–41 | DOI | MR | Zbl
[25] Stark B. S., “Irreducible subgroups of orthogonal groups generated by groups of root type 1”, Pacific J. Math., 53:2 (1974), 611–625 | DOI | MR | Zbl
[26] Stewart D. I., The reductive subgroups of $\mathrm{F}_4$, Mem. Amer. Math. Soc., 223, no. 1049, 2013 | MR
[27] Timmesfeld F. G., “Groups generated by $k$-transvections”, Invent. Math., 100:1 (1990), 167–206 | DOI | MR | Zbl
[28] Timmesfeld F. G., “Groups generated by $k$-root subgroups”, Invent. Math., 106:3 (1991), 575–666 | DOI | MR | Zbl
[29] Timmesfeld F. G., “Groups generated by $k$-root subgroups — a survey”, Groups, Combinatorics and Geometry (Durham, 1990), London Math. Soc. Lecture Note Ser., 165, Cambridge Univ. Press, Cambridge, 1992, 183–204 | MR | Zbl