Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_6_a3, author = {E. A. Sevost'yanov}, title = {On boundary extension and equicontinuity of families of mappings in terms of prime ends}, journal = {Algebra i analiz}, pages = {97--146}, publisher = {mathdoc}, volume = {30}, number = {6}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_6_a3/} }
E. A. Sevost'yanov. On boundary extension and equicontinuity of families of mappings in terms of prime ends. Algebra i analiz, Tome 30 (2018) no. 6, pp. 97-146. http://geodesic.mathdoc.fr/item/AA_2018_30_6_a3/
[1] Andreian Cazacu C., “On the length-area dilatation”, Complex Var. Theory Appl., 50 (2005), 765–776 | MR | Zbl
[2] Bishop C. J., Gutlyanskiĭ V. Ya., Martio O., Vuorinen M., “On conformal dilatation in space”, Int. J. Math. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl
[3] Caratheodory C., “Über die Begrenzung der einfach zusammenhängender Gebiete”, Math. Ann., 73:3 (1913), 323–370 | DOI | MR | Zbl
[4] Cristea M., “Local homeomorphisms having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 53:1 (2008), 77–99 | DOI | MR | Zbl
[5] Cristea M., “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1–3 (2010), 61–90 | DOI | MR | Zbl
[6] Golberg A., “Homeomorphisms with finite mean dilatations”, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 177–186 | DOI | MR | Zbl
[7] Golberg A., “Differential properties of $(\alpha, Q)$-homeomorphisms”, Further Progress in Analysis, World Sci. Publ., Hackensack, NJ, 2009, 218–228 | DOI | MR | Zbl
[8] Gutlyanskii V. Ya., Ryazanov V. I., Srebro U., Yakubov E., The Beltrami equation: A geometric approach, Dev. Math., 26, Springer, New York, 2012 | MR | Zbl
[9] Hencl S., Koskela P., Lectures on mappings of finite distortion, Lecture Notes in Math., 2096, Springer, Cham, 2014 | DOI | MR | Zbl
[10] Iwaniec T., Martin G., Geometrical function theory and non-linear analysis, Oxford Math. Monogr., Clarendon Press, Oxford, 2001 | MR
[11] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory, Springer Math. Monogr., Springer, New York, 2009 | MR | Zbl
[12] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A I Math., 448 (1969), 1–40 | MR
[13] Martio O., Rickman S., Väisälä J., “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 465 (1970), 1–13 | MR
[14] Martio O., Rickman S., Väisälä J., “Topological and metric properties of quasiregular mappings”, Ann. Acad. Sci. Fenn. Ser. A1, 488 (1971), 1–31 | MR
[15] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR
[16] Rickman S., Quasiregular mappings, Egreb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl
[17] Sevostyanov E. A., “Obobschenie odnoi lemmy E. A. Poletskogo na klassy prostranstvennykh otobrazhenii”, Ukr. mat. zh., 61:7 (2009), 969–975 | MR | Zbl
[18] Vuorinen M., Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl
[19] Goldshtein V. M., Vodopyanov S. K., “Metricheskoe popolnenie oblasti pri pomoschi konformnoi ëmkosti, invariantnoe pri kvazikonformnykh otobrazheniyakh”, Dokl. AN SSSR, 238:5 (1978), 1040–1042 | MR
[20] Kovtonyuk D. A., Ryazanov V. I., “Prostye kontsy i klassy Orlicha–Soboleva”, Algebra i analiz, 27:5 (2015), 81–116 | MR
[21] Gutlyanskii V., Ryazanov V., Yakubov E., “The Beltrami equations and prime ends”, Ukr. mat. vis., 12:1 (2015), 27–66 | MR | Zbl
[22] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 | MR | Zbl
[23] Kovtonyuk D. A., Salimov R., Sevostyanov E. A., K teorii otobrazhenii klassov Soboleva i Orlicha–Soboleva, Naukova dumka, Kiev, 2013
[24] Sevostyanov E. A., “O ravnostepennoi nepreryvnosti gomeomorfizmov s neogranichennoi kharakteristikoi”, Mat. trudy, 15:1 (2012), 178–204 | MR | Zbl
[25] Vodopyanov S. K., “O zamknutosti klassov otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Mat. trudy, 5:2 (2002), 92–137 | MR | Zbl
[26] Vodopyanov S. K., “Foundations of the theory of mappings with bounded distortion on Carnot groups”, Contemp. Math., 424, Amer. Math. Soc., Providence, RI, 2007, 303–344 | DOI | MR | Zbl
[27] Vodopyanov S. K., Goldshtein V. M., Prostranstva Soboleva i spetsialnye klassy otobrazhenii, NGU, Novosibirsk, 1981 | MR
[28] Vodopyanov S. K., Goldshtein V. M., Reshetnyak Yu. G., “O geometricheskikh svoistvakh funktsii s pervymi oboschënnymi proizvodnymi”, Uspekhi mat. nauk, 34:1 (1979), 17–65 | MR | Zbl
[29] Markina I., “Singularities of quasiregular mappings on Carnot groups”, Sci. Ser. A Math. Sci. (N.S.), 11 (2005), 69–81 | MR | Zbl
[30] Vodop'yanov S., Ukhlov A., “Mappings associated with weighted Sobolev Spaces”, Complex Anal. Dynam. Sys. III, Contemp. Math., 455, Amer. Math. Soc., Providence, RI, 2008, 363–382 | MR
[31] Vodopyanov S. K., Ukhlov A. D., “Prostranstva Coboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zh., 39:4 (1998), 776–795 | MR | Zbl
[32] Ukhlov A., Vodop'yanov S. K., “Mappings with bounded $(P, Q)$-distortion on Carnot groups”, Bull. Sci. Math., 134:6 (2010), 605–634 | DOI | MR | Zbl
[33] Gol'dshtein V., Ukhlov A., “Traces of functions of $L^1_2$ Dirichlet spaces on the Caratheéodory boundary”, Studia Math., 235:3 (2016), 209–224 | DOI | MR | Zbl
[34] Kruglikov V. I., Paikov V. I., “Capacities and prime ends of an $n$-dimensional domain”, Dokl. Akad. Nauk Ukrain. SSR Ser. A, 5 (1987), 10–13 | MR | Zbl
[35] Miklyukov V. M., “Otnositelnoe rasstoyanie M. A. Lavrenteva i prostye kontsy na neparametricheskikh poverkhnostyakh”, Ukr. mat. vestnik, 1:3 (2004), 349–372 | MR | Zbl
[36] Suvorov G. D., Obobschennyi “printsip dliny i ploschadi” v teorii otobrazhenii, Naukova dumka, Kiev, 1985 | MR
[37] Näkki R., “Prime ends and quasiconformal mappings”, J. Analyse Math., 35 (1979), 13–40 | DOI | MR | Zbl
[38] Vuorinen M., “Exceptional sets and boundary behavior of quasiregular mappings in $n$-space”, Ann. Acad. Sci. Fenn. Math. Diss., 11 (1976), 1–44 | MR
[39] Vuorinen M., “On the existence of angular limits of $n$-dimensional quasiconformal mappings”, Ark. Math., 18:2 (1980), 157–180 | DOI | MR | Zbl
[40] Näkki R., “Extension of Loewner's capacity theorem”, Trans. Amer. Math. Soc., 180 (1973), 229–236 | MR | Zbl
[41] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR
[42] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin etc., 1971 | DOI | MR | Zbl
[43] Gehring F. W., Martio O., “Quasiextremal distance domains and extension of quasiconformal mappings”, J. Analyse Math., 24 (1985), 181–206 | DOI | MR
[44] Gehring F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103 (1962), 353–393 | DOI | MR | Zbl
[45] Ziemer W. P., “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl
[46] Ziemer W. P., “Extremal length and $p$-capacity”, Michigan Math. J., 16 (1969), 43–51 | DOI | MR | Zbl
[47] Hesse J., “A $p$-extremal length and $p$-capacity equality”, Ark. Mat., 13 (1975), 131–144 | DOI | MR | Zbl
[48] Salimov R. R., “Ob otsenke mery obraza shara”, Sib. mat. zh., 53:4 (2012), 920–930 | MR | Zbl
[49] Ilyutko D. P., Sevostyanov E. A., “O granichnom povedenii otkrytykh diskretnykh otobrazhenii na rimanovykh mnogoobraziyakh”, Mat. sb., 209:5 (2018), 3–53 | DOI | MR | Zbl
[50] Martio O., Srebro U., “Periodic quasimeromorphic mappings”, J. Analyse Math., 28 (1975), 20–40 | DOI | Zbl
[51] Smolovaya E. S., “Granichnoe povedenie koltsevykh $Q$-gomeomorfizmov v metricheskikh prostranstvakh”, Ukr. mat. zh., 62:5 (2010), 682–689 | MR | Zbl
[52] Ryazanov V. I., Salimov R. R., Sevost'yanov E. A., “On convergence analysis of space homeomorphisms”, Siberian Adv. Math., 23:4 (2013), 263–293 | DOI | MR | Zbl
[53] Golberg A., Salimov R., “Topological mappings of integrally bounded $p$-moduli”, Ann. Univ. Buchar. Math. Ser., 3(LXI):1 (2012), 49–66 | MR | Zbl
[54] Golberg A., Salimov R., Sevost'yanov E., “Normal families of discrete open mappings with controlled $p$-module”, Contemp. Math., 667, Amer. Math. Soc., Providence, RI, 2016, 83–103 | DOI | MR | Zbl
[55] Cristea M., “The limit mapping of generalized ring homeomorphisms”, Complex Var. Elliptic Equ., 61 (2016), 608–622 | DOI | MR | Zbl
[56] Lomako T., Salimov R., Sevostyanov E., “On equicontinuity of solutions to the Beltrami equations”, Ann. Univ. Buchar. math. ser., 59:2 (2010), 263–274 | MR | Zbl
[57] Sevostyanov E. A., “O lokalnom povedenii otkrytykh diskretnykh otobrazhenii klassov Orlicha–Soboleva”, Ukr. mat. zh., 68:9 (2016), 1259–1272
[58] Shabat B. V., Vvedenie v kompleksnyi analiz, v. 1, Nauka, M., 1976
[59] Sevostyanov E. A., “O lokalnom i granichnom povedenii otobrazhenii v metricheskikh prostranstvakh”, Algebra i analiz, 28:6 (2016), 118–146
[60] Reimann H. M., Rychener T., Funktionen Beschränkter Mittlerer Oscillation, Lecture Notes in Math., 487, Springer-Verlag, Berlin, 1975 | DOI | MR
[61] Martio O., Sarvas J., “Injectivity theorems in plane and space”, Ann. Acad. Sci. Fenn. Ser. A1 Math., 4:2 (1979), 384–401 | MR
[62] Salimov R. R., Sevost'yanov E. A., “The Poletskii and Väisälä inequalities for the mappings with $(p,q)$-distortion”, Complex Var. Elliptic Equ., 59:2 (2014), 217–231 | DOI | MR | Zbl
[63] Heinonen J., Lectures on analysis on metric spaces, Universitext, Springer Science, New York, 2001 | DOI | MR | Zbl
[64] Hajlasz P., Koskela P., Sobolev met Poincare, Mem. Amer. Math. Soc., 145, no. 688, 2000, 101 pp. | MR
[65] Adamowicz T., Shanmugalingam N., “Non-conformal Loewner type estimates for modulus of curve families”, Ann. Acad. Sci. Fenn. Math., 35:2 (2010), 609–626 | DOI | MR | Zbl
[66] Sevost'yanov E., On boundary behavior of mappings in terms of prime ends, arXiv: 1602.00660