Spectral geometries on a~compact metric space
Algebra i analiz, Tome 30 (2018) no. 5, pp. 84-111.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2018_30_5_a2,
     author = {S. V. Buyalo},
     title = {Spectral geometries on a~compact metric space},
     journal = {Algebra i analiz},
     pages = {84--111},
     publisher = {mathdoc},
     volume = {30},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_5_a2/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - Spectral geometries on a~compact metric space
JO  - Algebra i analiz
PY  - 2018
SP  - 84
EP  - 111
VL  - 30
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_5_a2/
LA  - ru
ID  - AA_2018_30_5_a2
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T Spectral geometries on a~compact metric space
%J Algebra i analiz
%D 2018
%P 84-111
%V 30
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_5_a2/
%G ru
%F AA_2018_30_5_a2
S. V. Buyalo. Spectral geometries on a~compact metric space. Algebra i analiz, Tome 30 (2018) no. 5, pp. 84-111. http://geodesic.mathdoc.fr/item/AA_2018_30_5_a2/

[1] Bouligand G., “Ensembles impropes et nombre dimensionnel”, Bull. Sci. Math. (2), 52 (1928), 320–344, 361–376 | Zbl

[2] Buyalo S. V., “Izmerimost samopodobnykh spektralnykh geometrii”, Algebra i analiz, 12:3 (2000), 1–39 | MR | Zbl

[3] Connes A., Noncommutative geometry, Acad. Press, San Diego, CA, 1994 | MR | Zbl

[4] Dixmier J., “Existence de traces non normales”, C. R. Acad. Sci. Paris Ser. A-B, 262 (1966), A1107–A1108 | MR

[5] Falconer K., Fractal geometry. Mathematical foundations and applications, John Willey Sons, Chichester, 1990 | MR | Zbl

[6] Falconer K., Techniques in fractal geometry, John Willey Sons, Chichester, 1997 | MR | Zbl

[7] Kolmogorov A. N., Tikhomirov V. M., “$\varepsilon$-entropiya i $\varepsilon$-emkost mnozhestv v funktsionalnykh prostranstvakh”, Uspekhi mat. nauk, 14:2 (1959), 3–86 | MR | Zbl

[8] Naimark M. A., Normirovannye koltsa, GITTL, M., 1959

[9] Tricot C., “Two definitions of fractal dimension”, Math. Proc. Cambridge Philos. Soc., 91:1 (1982), 57–74 | DOI | MR | Zbl