Solvability criteria for the Neumann $p$-Laplacian with irregular data
Algebra i analiz, Tome 30 (2018) no. 3, pp. 129-139.

Voir la notice de l'article provenant de la source Math-Net.Ru

Necessary and sufficient conditions are found for the unique solvability of the Neumann problem for the $p$-Laplace operator. They characterize both the domain and measures on the right-hand sides.
Keywords: level surface, weak solution, Poincaré inequality, isocapacitary function.
@article{AA_2018_30_3_a7,
     author = {V. Maz'ya},
     title = {Solvability criteria for the {Neumann} $p${-Laplacian} with irregular data},
     journal = {Algebra i analiz},
     pages = {129--139},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a7/}
}
TY  - JOUR
AU  - V. Maz'ya
TI  - Solvability criteria for the Neumann $p$-Laplacian with irregular data
JO  - Algebra i analiz
PY  - 2018
SP  - 129
EP  - 139
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a7/
LA  - en
ID  - AA_2018_30_3_a7
ER  - 
%0 Journal Article
%A V. Maz'ya
%T Solvability criteria for the Neumann $p$-Laplacian with irregular data
%J Algebra i analiz
%D 2018
%P 129-139
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a7/
%G en
%F AA_2018_30_3_a7
V. Maz'ya. Solvability criteria for the Neumann $p$-Laplacian with irregular data. Algebra i analiz, Tome 30 (2018) no. 3, pp. 129-139. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a7/

[1] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[2] Maz'ya V., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, Springer, Heidelberg, 2011 | DOI | MR | Zbl

[3] Mazya V. G., Poborchii S. V., “O razreshimosti zadachi Neimana v oblasti s pikom”, Algebra i analiz, 20:5 (2008), 109–154 | MR | Zbl