Solvability criteria for the Neumann $p$-Laplacian with irregular data
Algebra i analiz, Tome 30 (2018) no. 3, pp. 129-139
Cet article a éte moissonné depuis la source Math-Net.Ru
Necessary and sufficient conditions are found for the unique solvability of the Neumann problem for the $p$-Laplace operator. They characterize both the domain and measures on the right-hand sides.
Keywords:
level surface, weak solution, isocapacitary function.
Mots-clés : Poincaré inequality
Mots-clés : Poincaré inequality
@article{AA_2018_30_3_a7,
author = {V. Maz'ya},
title = {Solvability criteria for the {Neumann} $p${-Laplacian} with irregular data},
journal = {Algebra i analiz},
pages = {129--139},
year = {2018},
volume = {30},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a7/}
}
V. Maz'ya. Solvability criteria for the Neumann $p$-Laplacian with irregular data. Algebra i analiz, Tome 30 (2018) no. 3, pp. 129-139. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a7/
[1] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl
[2] Maz'ya V., Sobolev spaces with applications to elliptic partial differential equations, Grundlehren Math. Wiss., 342, Springer, Heidelberg, 2011 | DOI | MR | Zbl
[3] Mazya V. G., Poborchii S. V., “O razreshimosti zadachi Neimana v oblasti s pikom”, Algebra i analiz, 20:5 (2008), 109–154 | MR | Zbl