Radial and logarithmic refinements of Hardy's inequality
Algebra i analiz, Tome 30 (2018) no. 3, pp. 55-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Versions of Hardy's inequality involving radial derivatives and logarithmic refinements are deduced.
Keywords: Hardy's inequality, factorizations of differential operators, radial and logarithmic refinements.
@article{AA_2018_30_3_a2,
     author = {F. Gesztesy and L. L. Littlejohn and I. Michael and M. M. H. Pang},
     title = {Radial and logarithmic refinements of {Hardy's} inequality},
     journal = {Algebra i analiz},
     pages = {55--65},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a2/}
}
TY  - JOUR
AU  - F. Gesztesy
AU  - L. L. Littlejohn
AU  - I. Michael
AU  - M. M. H. Pang
TI  - Radial and logarithmic refinements of Hardy's inequality
JO  - Algebra i analiz
PY  - 2018
SP  - 55
EP  - 65
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a2/
LA  - en
ID  - AA_2018_30_3_a2
ER  - 
%0 Journal Article
%A F. Gesztesy
%A L. L. Littlejohn
%A I. Michael
%A M. M. H. Pang
%T Radial and logarithmic refinements of Hardy's inequality
%J Algebra i analiz
%D 2018
%P 55-65
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a2/
%G en
%F AA_2018_30_3_a2
F. Gesztesy; L. L. Littlejohn; I. Michael; M. M. H. Pang. Radial and logarithmic refinements of Hardy's inequality. Algebra i analiz, Tome 30 (2018) no. 3, pp. 55-65. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a2/

[1] Adimurthi, Grossi M., Santra S., “Optimal Hardy–Rellich inequalities, maximum principle and related eigenvalue problem”, J. Funct. Anal., 240:1 (2006), 36–83 | DOI | MR | Zbl

[2] Balinsky A., Evans W. D., Spectral analysis of relativistic operators, Imperial College Press, London, 2011 | MR

[3] Balinsky A. A., Evans W. D., Lewis R. T., The analysis and geometry of Hardy's inequality, Universitext, Springer, Cham, 2015 | DOI | MR | Zbl

[4] Cycon H. L., Froese R. G., Kirsch W., Simon B., Schrödinger operators with applications to quantum mechanics and global geometry, Texts Monogr. Phys., Springer, Berlin, 1987 | MR

[5] Faris W. G., “Weak Lebesgue spaces and quantum mechanical binding”, Duke Math. J., 43:2 (1976), 365–373 | DOI | MR | Zbl

[6] Gesztesy F., “On non-degenerate ground states for Schrödinger operators”, Rep. Math. Phys., 20:1 (1984), 93–109 | DOI | MR | Zbl

[7] Gesztesy F., Littlejohn L. L., “Factorizations and Hardy–Rellich-type inequalities”, Non-Linear Partial Differential Equations, Mathematical Physics, and Stochastic Analysis, The Helge Holden Anniversary Volume, EMS Congress Reports, eds. Gesztesy F., Hanche-Olsen H., Jakobsen E., Lyubarskii Y., Risebro N., Seip K. (to appear)

[8] Gesztesy F., Littlejohn L. L., Michael I., Pang M., In preparation

[9] Gesztesy F., Mitrea M., Nenciu I., Teschl G., “Decoupling of deficiency indices and applications to Schrödinger-type operators with possibly strongly singular potentials”, Adv. Math., 301 (2016), 1022–1061 | DOI | MR | Zbl

[10] Gesztesy F., Pittner L. L., “A generalization of the virial theorem for strongly singular potentials”, Rep. Math. Phys., 18:2 (1980), 149–162 | DOI | MR | Zbl

[11] Gesztesy F., Ünal M., “Perturbative oscillation criteria and Hardy-type inequalities”, Math. Nachr., 189 (1998), 121–144 | DOI | MR | Zbl

[12] Kalf H., “On the characterization of the Friedrichs extension of ordinary or elliptic differential operators with a strongly singular potential”, J. Funct. Anal., 10 (1972), 230–250 | DOI | MR | Zbl

[13] Kalf H., Schmincke U.-W., Walter J., Wüst R., “On the spectral theory of Schrödinger and Dirac operators with strongly singular potentials”, Spectral Theory and Differential Equations, Lecture Notes in Math., 448, Springer, Berlin, 1975, 182–226 | DOI | MR

[14] Kalf H., Walter J., “Strongly singular potentials and essential self-adjointness of singular elliptic operators in $C_0^\infty(\mathbb R^n\setminus\{0\})$”, J. Funct. Anal., 10 (1972), 114–130 | DOI | MR | Zbl

[15] Kufner A., Maligranda L., Persson L.-E., The Hardy inequality. About its history and some related results, Vydavatelský Servis, Pilsen, 2007 | MR | Zbl

[16] Kufner A., Persson L.-E., Samko N., Weighted inequalities of Hardy type, 2nd ed., World Sci. Publ. Co., Singapore 2017 | MR | Zbl

[17] Opic B., Kufner A., Hardy-type inequalities, Pitman Res. Notes Math. Ser., 219, Longman Sci. Technical, Harlow, 1990 | MR | Zbl

[18] Ruzhansky M., Yessirkegenov N., Factorizations and Hardy–Rellich inequalities on stratified groups, arXiv: 1706.05108

[19] Tertikas A., Zographopoulos N. B., “Best constants in the Hardy–Rellich inequalities and related improvements”, Adv. Math., 209:2 (2007), 407–459 | DOI | MR | Zbl