A general trace formula for the differential operator on a~segment with the last coefficient perturbed by a~finite signed measure
Algebra i analiz, Tome 30 (2018) no. 3, pp. 30-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2018_30_3_a1,
     author = {E. D. Gal'kovskiǐ and A. I. Nazarov},
     title = {A general trace formula for the differential operator on a~segment with the last coefficient perturbed by a~finite signed measure},
     journal = {Algebra i analiz},
     pages = {30--54},
     publisher = {mathdoc},
     volume = {30},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_3_a1/}
}
TY  - JOUR
AU  - E. D. Gal'kovskiǐ
AU  - A. I. Nazarov
TI  - A general trace formula for the differential operator on a~segment with the last coefficient perturbed by a~finite signed measure
JO  - Algebra i analiz
PY  - 2018
SP  - 30
EP  - 54
VL  - 30
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_3_a1/
LA  - ru
ID  - AA_2018_30_3_a1
ER  - 
%0 Journal Article
%A E. D. Gal'kovskiǐ
%A A. I. Nazarov
%T A general trace formula for the differential operator on a~segment with the last coefficient perturbed by a~finite signed measure
%J Algebra i analiz
%D 2018
%P 30-54
%V 30
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_3_a1/
%G ru
%F AA_2018_30_3_a1
E. D. Gal'kovskiǐ; A. I. Nazarov. A general trace formula for the differential operator on a~segment with the last coefficient perturbed by a~finite signed measure. Algebra i analiz, Tome 30 (2018) no. 3, pp. 30-54. http://geodesic.mathdoc.fr/item/AA_2018_30_3_a1/

[1] Vinokurov V. A., Sadovnichii V. A., “Asimptotika sobstvennykh znachenii i sobstvennykh funktsii i formula sleda dlya potentsiala, soderzhaschego $\delta$-funktsii”, Differents. uravneniya, 38:6 (2002), 735–751 | MR | Zbl

[2] Gelfand I. M., Levitan B. M., “Ob odnom prostom tozhdestve dlya sobstvennykh znachenii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 88:4 (1953), 593–596 | Zbl

[3] Konechnaya N. N., Safonova T. A., Tagirova R. N., “Asimptotika sobstvennykh znachenii i regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Vestn. SAFU, 2016, no. 1, 104–113 | MR

[4] Naimark M. A., Lineinye differentsialnye operatory, 2-e izd., Nauka, M., 1969 | MR

[5] Nazarov A. I., “Exact $L_2$-small ball asymptotics of Gaussian processes and the spectrum of boundary-value problems”, J. Theoret. Probab., 22:3 (2009), 640–665 | DOI | MR | Zbl

[6] Nazarov A. I., Stolyarov D. M., Zatitskiy P. B., “The Tamarkin equiconvergence theorem and a first-order trace formula for regular differential operators revisited”, J. Spectr. Theory, 4:2 (2014), 365–389 | DOI | MR | Zbl

[7] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Elementarnye funktsii, Nauka, M., 1981 | MR

[8] Savchuk A. M., “Regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Uspekhi mat. nauk, 55:6 (2000), 155–156 | DOI | MR | Zbl

[9] Savchuk A. M., Shkalikov A. A., “Formula sleda dlya operatorov Shturma–Liuvillya s singulyarnymi potentsialami”, Mat. zametki, 69:3 (2001), 427–442 | DOI | MR | Zbl

[10] Sadovnichii V. A., Podolskii V. E., “Sledy operatorov”, Uspekhi mat. nauk, 61:5 (2006), 89–156 | DOI | MR | Zbl

[11] Tamarkin Ya. D., O nekotorykh obschikh zadachakh teorii obyknovennykh differentsialnykh uravnenii i o razlozhenii proizvolnykh funktsii v ryady, Petrograd, 1917

[12] Shkalikov A. A., “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Tr. semin. im. I. G. Petrovskogo, 9, 1983, 140–179

[13] Shevchenko R. F., “O slede differentsialnogo operatora”, Dokl. AN SSSR, 164:1 (1965), 62–65 | MR | Zbl