Heat flow for a~class of quadratic functionals with nondiagonal principal matrix. Existence of a~smooth global solution
Algebra i analiz, Tome 30 (2018) no. 2, pp. 45-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of quasilinear parabolic systems with nondiagonal principal matrices and strongly nonlinear additional terms is considered. The elliptic operator of the system has a variational structure. The existence of a global smooth solution is proved in the case of two spatial variables.
Keywords: parabolic systems, strong nonlinearity, global solvability.
@article{AA_2018_30_2_a2,
     author = {A. A. Arkhipova},
     title = {Heat flow for a~class of quadratic functionals with nondiagonal principal matrix. {Existence} of a~smooth global solution},
     journal = {Algebra i analiz},
     pages = {45--75},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_2_a2/}
}
TY  - JOUR
AU  - A. A. Arkhipova
TI  - Heat flow for a~class of quadratic functionals with nondiagonal principal matrix. Existence of a~smooth global solution
JO  - Algebra i analiz
PY  - 2018
SP  - 45
EP  - 75
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_2_a2/
LA  - en
ID  - AA_2018_30_2_a2
ER  - 
%0 Journal Article
%A A. A. Arkhipova
%T Heat flow for a~class of quadratic functionals with nondiagonal principal matrix. Existence of a~smooth global solution
%J Algebra i analiz
%D 2018
%P 45-75
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_2_a2/
%G en
%F AA_2018_30_2_a2
A. A. Arkhipova. Heat flow for a~class of quadratic functionals with nondiagonal principal matrix. Existence of a~smooth global solution. Algebra i analiz, Tome 30 (2018) no. 2, pp. 45-75. http://geodesic.mathdoc.fr/item/AA_2018_30_2_a2/

[1] Struwe M., Variational methods. Applications to nonlinear partial differential equations and Hamiltonian systems, Springer-Verlag, Berlin, 1990 | MR

[2] Chen Y., Struwe M., “Existence and partial regularity results for the heat flow for harmonic maps”, Math. Z., 201:1 (1989), 83–103 | DOI | MR

[3] Chang K. C., “Heat flow and boundary value problem for harmonic maps”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6:5 (1989), 363–395 | DOI | MR

[4] Struwe M., “On the evolution of harmonic maps in higher dimensions”, J. Differential Geom., 28:3 (1988), 485–505 | DOI | MR

[5] Struwe M., “On the evolution of harmonic mappings of Riemanian syrfaces”, Comment. Math. Helv., 60:4 (1985), 558–591 | DOI | MR

[6] Wieser W., “On parabolic systems with variational structure”, Manuscripta Math., 54:1–2 (1985), 53–82 | DOI | MR

[7] Tolksdorf P., “On some parabolic variational problems with quadratic growth”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 13:2 (1986), 193–223 | MR

[8] Chang K.-C., Ding W.-Y., Ye R., “Finite-time blow-up of the heat flow of harmonic maps”, J. Differential. Geom., 36:2 (1992), 507–515 | DOI | MR

[9] Giaquinta M., Struwe M., “On the partial regularity of weak solutions on non-linear parabolic systems”, Math. Z., 179:4 (1982), 437–451 | DOI | MR

[10] Necǎs J., Šverák V., “On regularity of solutions of nonlinear parabolic systems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 18:1 (1991), 1–11 | MR

[11] Stará J., John O., “On some regularity and non regularity results for solutions to parabolic systems”, Matematiche (Catania), 55:2 (2000), 145–163 | MR

[12] Arkhipova A. A., “O globalnoi razreshimosti zadachi Koshi–Dirikhle dlya nediagonalnykh parabolicheskikh sistem s variatsionnoi strukturoi pri dvukh prostranstvennykh peremennykh”, Probl. mat. anal., 16, S.-Peterburg. gos. un-t, S.-Peterburg, 1997, 3–40

[13] Arkhipova A., “Cauchy–Neumann problem for a class of nondiagonal parabolic systems with quadratic growth nonlinearities. I. On the continuability of smooth solutions”, Comment. Math. Univ. Carolin., 41:4 (2000), 693–718 | MR

[14] Arkhipova A., “Cauchy–Neumann problem for a class of nondiagonal parabolic systems with quadratic growth nonlinearities. II. Local and global solvability results”, Comment. Math. Univ. Carolin., 42:1 (2001), 53–76 | MR

[15] Arkhipova A. A., “O klassicheskoi razreshimosti zadachi Koshi–Dirikhle dlya nediagonalnykh parabolicheskikh sistem v sluchae dvukh prostranstvennykh peremennykh”, Tr. S.-Peterburg. mat. o-va, 9, 2001, 1–19

[16] Arkhipova A., Ladyzhenskaya O. A., “On the inhomogeneous incompressible fluids and reverse Hölder inequalities”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 25:1–2 (1997), 51–67 | MR

[17] Arkhipova A. A., Ladyzhenskaya O. A., “Ob odnom obobschenii lemmy Geringa”, Zap. nauch. semin. POMI, 259, 1999, 7–18 | MR | Zbl

[18] Arkhipova A., “Reverse Hölder inequalities with boundary integrals and $L_p$-estimates for solutions of elliptic and parabolic nonlinear boundary-value problems”, Amer. Math. Soc. Transl. Ser. 2, 164 (1995), 15–42, Amer. Math. Soc., Providence, RI | MR

[19] Arkhipova A. A., “O regulyarnosti resheniya zadach Neimana dlya kvazilineinykh parabolicheskikh sistem”, Izv. RAN. Ser. mat., 58:5 (1994), 3–25 | MR | Zbl

[20] Arkhipova A., “Quasireverse Hölder inequalities and a priori estimates for quasilinear elliptic systems”, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl., 14:2 (2003), 91–108 | MR

[21] Arkhipova A., “Quasireverse Hölder inequalities in parabolic metric and their applications”, Amer. Math. Soc. Transl. Ser. 2, 220, Amer. Mat. Soc., Providence, RI, 2007, 1–25 | MR

[22] Arkhipova A., Stará J., “A priori estimates for quasilinear parabolic systems with quadratic nonlinearity in the gradient”, Comment. Math. Univ. Carolin., 51:4 (2010), 2–16 | MR

[23] Arkhipova A. A., “$L_p$-otsenki gradientov reshenii nachalno-kraevykh zadach dlya kvazilineinykh parabolicheskikh sistem”, Probl. mat. anal., 13, S.-Peterburg. gos. un-t, S.-Peterburg, 1992, 4–21

[24] Specovius-Neigebauer M., Frehse J., “Existence of regular solutions to a class of parabolic systems in two space dimensions with critical growgh behaviour”, Ann. Univ. Ferrara Sez. VII Sci. Mat., 55:2 (2009), 239–261 | DOI | MR

[25] Specovius-Neigebauer M., Frehse J., “Morrey estimates and Hölder continuity for solutions to parabolic equations with entropy inequalities”, J. Reine Angew. Math., 638 (2010), 169–188 | MR

[26] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[27] Giaguinta M., Martinazzi L., An introduction to the regularity theory for elliptic systems, harmonic maps and minimal graphs, Appunti, Sci. Norm. Super. Pisa (N.S.), 11, 2nd ed., Pisa, 2012 | MR