Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_2_a11, author = {V. A. Solonnikov}, title = {On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface}, journal = {Algebra i analiz}, pages = {274--317}, publisher = {mathdoc}, volume = {30}, number = {2}, year = {2018}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/} }
TY - JOUR AU - V. A. Solonnikov TI - On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface JO - Algebra i analiz PY - 2018 SP - 274 EP - 317 VL - 30 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/ LA - en ID - AA_2018_30_2_a11 ER -
%0 Journal Article %A V. A. Solonnikov %T On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface %J Algebra i analiz %D 2018 %P 274-317 %V 30 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/ %G en %F AA_2018_30_2_a11
V. A. Solonnikov. On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface. Algebra i analiz, Tome 30 (2018) no. 2, pp. 274-317. http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/
[1] Denisova I. V., “Evolution of compressible and incompressible fluids separated by a closed interface”, Interface Free Bound., 2:3 (2000), 283–312 | DOI | MR
[2] Denisova I. V., “On energy inequality for the problem on the evolution of two fluids of different types without surface tension”, J. Math. Fluid. Mech., 17:1 (2015), 183–198 | DOI | MR
[3] Shibata Y., “On the $R$-boundedness for the two phase problem with phase transition: compressible-incompressible model problem”, Funkcial. Ekvac., 59:2 (2016), 243–287 | DOI | MR
[4] Kubo T., Shibata Y., On the evolution of compressible and incompressible fluids with a sharp interface, Preprint, 2013
[5] Denisova I. V., Solonnikov V. A., “Local and global solvability of free boundary problems for compressible Navier–Stokes equations near equilibria”, Handbook of mathematical analysis in mechanics of viscous fluids, Springer, Cham, 2017, 1–88 | MR
[6] Solonnikov V. A., “Ob odnoi nachalno-kraevoi zadache dlya sistemy Stoksa, voznikayuschei pri izuchenii zadachi so svobodnoi granitsei”, Tr. Mat. in-ta AN SSSR, 188, 1990, 150–188 | MR | Zbl
[7] Nishida T., Teramoto Y., Yoshihara H., “Global in time behavior of viscous surface waves: horizontally periodic motion”, J. Math. Kyoto Univ., 44:2 (2004), 271–323 | DOI | MR
[8] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | MR | Zbl
[9] Solonnikov V. A., “On the solvability of free boundary problem for viscous compressible fluids in an infinite time interval”, Mathematical fluid mechanics, present and future, Springer Proc. Math. Stat., 183, Springer, Tokyo, 2016, 287–315 | DOI | MR
[10] Babich V. M., “K voprosu o rasprostranenii funktsii”, Uspekhi mat. nauk, 8:2 (1954), 111–113 | MR | Zbl