On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface
Algebra i analiz, Tome 30 (2018) no. 2, pp. 274-317.

Voir la notice de l'article provenant de la source Math-Net.Ru

The model problem under study concerns the evolution of two viscous capillary fluids of different types: compressible and incompressible, contained in a bounded vessel and separated by a free interface. The solution is estimated in the Sobolev–Slobodetskiǐ function spaces; these estimates can be useful for the proof of stability for the rest state.
Keywords: compressible and incompressible fluids, free boundary, Sobolev–Slobodetskiǐ spaces.
@article{AA_2018_30_2_a11,
     author = {V. A. Solonnikov},
     title = {On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface},
     journal = {Algebra i analiz},
     pages = {274--317},
     publisher = {mathdoc},
     volume = {30},
     number = {2},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/}
}
TY  - JOUR
AU  - V. A. Solonnikov
TI  - On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface
JO  - Algebra i analiz
PY  - 2018
SP  - 274
EP  - 317
VL  - 30
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/
LA  - en
ID  - AA_2018_30_2_a11
ER  - 
%0 Journal Article
%A V. A. Solonnikov
%T On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface
%J Algebra i analiz
%D 2018
%P 274-317
%V 30
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/
%G en
%F AA_2018_30_2_a11
V. A. Solonnikov. On the model problem arising in the study of motion of viscous compressible and incompressible fluids with a~free interface. Algebra i analiz, Tome 30 (2018) no. 2, pp. 274-317. http://geodesic.mathdoc.fr/item/AA_2018_30_2_a11/

[1] Denisova I. V., “Evolution of compressible and incompressible fluids separated by a closed interface”, Interface Free Bound., 2:3 (2000), 283–312 | DOI | MR

[2] Denisova I. V., “On energy inequality for the problem on the evolution of two fluids of different types without surface tension”, J. Math. Fluid. Mech., 17:1 (2015), 183–198 | DOI | MR

[3] Shibata Y., “On the $R$-boundedness for the two phase problem with phase transition: compressible-incompressible model problem”, Funkcial. Ekvac., 59:2 (2016), 243–287 | DOI | MR

[4] Kubo T., Shibata Y., On the evolution of compressible and incompressible fluids with a sharp interface, Preprint, 2013

[5] Denisova I. V., Solonnikov V. A., “Local and global solvability of free boundary problems for compressible Navier–Stokes equations near equilibria”, Handbook of mathematical analysis in mechanics of viscous fluids, Springer, Cham, 2017, 1–88 | MR

[6] Solonnikov V. A., “Ob odnoi nachalno-kraevoi zadache dlya sistemy Stoksa, voznikayuschei pri izuchenii zadachi so svobodnoi granitsei”, Tr. Mat. in-ta AN SSSR, 188, 1990, 150–188 | MR | Zbl

[7] Nishida T., Teramoto Y., Yoshihara H., “Global in time behavior of viscous surface waves: horizontally periodic motion”, J. Math. Kyoto Univ., 44:2 (2004), 271–323 | DOI | MR

[8] Agranovich M. S., Vishik M. I., “Ellipticheskie zadachi s parametrom i parabolicheskie zadachi obschego vida”, Uspekhi mat. nauk, 19:3 (1964), 53–161 | MR | Zbl

[9] Solonnikov V. A., “On the solvability of free boundary problem for viscous compressible fluids in an infinite time interval”, Mathematical fluid mechanics, present and future, Springer Proc. Math. Stat., 183, Springer, Tokyo, 2016, 287–315 | DOI | MR

[10] Babich V. M., “K voprosu o rasprostranenii funktsii”, Uspekhi mat. nauk, 8:2 (1954), 111–113 | MR | Zbl