Adelic quotient group for algebraic surfaces
Algebra i analiz, Tome 30 (2018) no. 1, pp. 151-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2018_30_1_a6,
     author = {D. V. Osipov},
     title = {Adelic quotient group for algebraic surfaces},
     journal = {Algebra i analiz},
     pages = {151--169},
     publisher = {mathdoc},
     volume = {30},
     number = {1},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2018_30_1_a6/}
}
TY  - JOUR
AU  - D. V. Osipov
TI  - Adelic quotient group for algebraic surfaces
JO  - Algebra i analiz
PY  - 2018
SP  - 151
EP  - 169
VL  - 30
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2018_30_1_a6/
LA  - ru
ID  - AA_2018_30_1_a6
ER  - 
%0 Journal Article
%A D. V. Osipov
%T Adelic quotient group for algebraic surfaces
%J Algebra i analiz
%D 2018
%P 151-169
%V 30
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2018_30_1_a6/
%G ru
%F AA_2018_30_1_a6
D. V. Osipov. Adelic quotient group for algebraic surfaces. Algebra i analiz, Tome 30 (2018) no. 1, pp. 151-169. http://geodesic.mathdoc.fr/item/AA_2018_30_1_a6/

[1] Kassels Dzh., Globalnye polya. Algebraicheskaya teoriya chisel, Mir, M., 1969

[2] Parshin A. N., “K arifmetike dvumernykh skhem. I. Raspredeleniya i vychety”, Izv. AN SSSR. Ser. mat., 40:4 (1976), 736–773 | MR | Zbl

[3] Beilinson A. A., “Vychety i adeli”, Funkts. anal. i ego pril., 14:1 (1980), 44–45 | MR | Zbl

[4] Huber A., “On the Parshin–Beilinson adeles for schemes”, Abh. Math. Sem. Univ. Hamburg, 61 (1991), 249–273 | DOI | MR

[5] Osipov D. V., “$n$-dimensional local fields and adeles on $n$-dimensional schemes”, Surveys in contemporary mathematics, London Math. Soc. Lecture Note Ser., 347, Cambridge Univ. Press, Cambridge, 2007, 131–164 | MR

[6] Parshin A. N., “Representations of higher adelic groups and arithmetic”, Proc. Internat. Congress of Mathematicians, v. 1, Hindustan Book Agency, New Delhi, 2010, 362–392 | MR

[7] Parshin A. N., “Voprosy i zamechaniya k programme Lenglendsa”, Uspekhi mat. nauk, 67:3 (2012), 115–146 | DOI | MR | Zbl

[8] Parshin A. N., “O gipoteze pryamogo obraza v otnositelnoi programme Lenglendsa”, Uspekhi mat. nauk, 70:5 (2015), 181–182 | DOI | MR | Zbl

[9] Osipov D. V., Parshin A. N., “Garmonicheskii analiz na lokalnykh polyakh i prostranstvakh adelei. II”, Izv. RAN. Ser. mat., 75:4 (2011), 91–164 | DOI | MR | Zbl

[10] Osipov D. V., Arithmetic surfaces and adelic quotient groups, Preprint, 2017

[11] Burban I., Drozd Yu., “Maximal Cohen-Macaulay modules over surface singularities”, Trends in representation theory of algebras and related topics, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich, 2008, 101–166 | MR

[12] Osipov D., Zhu X., “The two-dimensional Contou–Carrère symbol and reciprocity laws”, J. Algebraic Geom., 25:4 (2016), 703–774 | DOI | MR

[13] Gorchinskii S. O., Osipov D. V., “Yavnaya formula dlya mnogomernogo simvola Kontu–Karrera”, Uspekhi mat. nauk, 70:1 (2015), 183–184 | DOI | MR | Zbl

[14] Gorchinskii S. O., Osipov D. V., “Mnogomernyi simvol Kontu–Karrera: lokalnaya teoriya”, Mat. sb., 206:9 (2015), 21–98 | DOI | MR | Zbl

[15] Gorchinskii S. O., Osipov D. V., “Mnogomernyi simvol Kontu–Karrera i nepreryvnye avtomorfizmy”, Funkts. anal. i ego pril., 50:4 (2016), 26–42 | DOI | MR

[16] Matsumura H., Commutative algebra, Math. Lecture Note Ser., 56, Second ed., Benjamin/Cummings Publ. Co., Inc., Reading, Mass., 1980 | MR

[17] Osipov D. V., “Sootvetstvie Krichevera dlya algebraicheskikh mnogoobrazii”, Izv. RAN. Ser. mat., 65:5 (2001), 91–128 | DOI | MR | Zbl

[18] Khartskhorn R., Algebraicheskaya geometriya, Mir, M., 1981

[19] Parshin A. N., “Lokalnaya teoriya polei klassov”, Tr. Mat. in-ta SSSR, 165, 1984, 143–170 | MR | Zbl

[20] Gorchinskii S. O., Osipov D. V., “Nepreryvnye gomomorfizmy mezhdu algebrami iterirovannykh ryadov Lorana nad koltsom”, Tr. Mat. in-ta RAN, 294, 2016, 54–75 | DOI | MR

[21] Osipov D. V., “Second Chern numbers of vector bundles and higher adeles”, Bull. Korean Math. Soc., 54:5 (2017), 1699–1718 | MR