Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2018_30_1_a4, author = {D. D. Kiselev and A. V. Yakovlev}, title = {Ultrasolvable and {Sylow} extensions with cyclic kernel}, journal = {Algebra i analiz}, pages = {128--138}, publisher = {mathdoc}, volume = {30}, number = {1}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2018_30_1_a4/} }
D. D. Kiselev; A. V. Yakovlev. Ultrasolvable and Sylow extensions with cyclic kernel. Algebra i analiz, Tome 30 (2018) no. 1, pp. 128-138. http://geodesic.mathdoc.fr/item/AA_2018_30_1_a4/
[1] Yakovlev A. V., “Zadacha pogruzheniya polei”, Izv. AN SSSR. Ser. mat., 28:3 (1964), 645–660 | MR | Zbl
[2] Ishkhanov V. V., “O polupryamoi zadache pogruzheniya s nilpotentnym yadrom”, Izv. AN SSSR. Ser. mat., 40:1 (1976), 3–25 | MR | Zbl
[3] Kiselev D. D., Lure B. B., “Ultrarazreshimost i singulyarnost v probleme pogruzheniya”, Zap. nauch. semin. POMI, 414, 2013, 113–126
[4] Kiselev D. D., “Primery zadach pogruzheniya, u kotorykh resheniya tolko polya”, Uspekhi mat. nauk, 68:4 (2013), 181–182 | DOI | MR | Zbl
[5] Kiselev D. D., “Ob ultrarazreshimosti gruppovykh $p$-rasshirenii abelevoi gruppy s pomoschyu tsiklicheskogo yadra”, Zap. nauch. semin. POMI, 452, 2016, 108–131 | MR
[6] Kiselev D. D., Chubarov I. A., “Ob ultrarazreshimosti nekotorykh klassov minimalnykh nepolupryamykh $p$-rasshirenii s tsiklicheskim yadrom dlya $p>2$”, Zap. nauch. semin. POMI, 452, 2016, 132–157 | MR
[7] Kiselev D. D., “Minimal $p$-extensions and the embedding problem”, Comm. Algebra, 46:1 (2018), 290–321 | DOI | MR
[8] Ishkhanov V. V., Lure B. B., Faddeev D. K., Zadacha pogruzheniya v teorii Galua, Nauka, M., 1990 | MR
[9] Yakovlev A. V., “Ob ultrarazreshimykh zadachakh pogruzheniya dlya chislovykh polei”, Algebra i analiz, 27:6 (2015), 260–263 | MR
[10] Borevich Z. I., Shafarevich I. R., Teoriya chisel, Nauka, M., 1985 | MR
[11] Kassels Dzh., Frelikh A. (red.), Algebraicheskaya teoriya chisel, Mir, M., 1969 | MR