Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds
Algebra i analiz, Tome 29 (2017) no. 6, pp. 230-247.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_6_a7,
     author = {A. V. Smirnov},
     title = {Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds},
     journal = {Algebra i analiz},
     pages = {230--247},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/}
}
TY  - JOUR
AU  - A. V. Smirnov
TI  - Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds
JO  - Algebra i analiz
PY  - 2017
SP  - 230
EP  - 247
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/
LA  - ru
ID  - AA_2017_29_6_a7
ER  - 
%0 Journal Article
%A A. V. Smirnov
%T Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds
%J Algebra i analiz
%D 2017
%P 230-247
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/
%G ru
%F AA_2017_29_6_a7
A. V. Smirnov. Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds. Algebra i analiz, Tome 29 (2017) no. 6, pp. 230-247. http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/

[1] Waldhausen F., “Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I”, Invent. Math., 3 (1967), 308–333 | DOI | MR | Zbl

[2] Waldhausen F., “Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. II”, Invent. Math., 4 (1967), 87–117 | DOI | MR | Zbl

[3] Buyalo S. V., Kobelskii V. L., “Obobschennye grafmnogoobraziya nepolozhitelnoi krivizny”, Algebra i analiz, 11:2 (1999), 64–87 | MR | Zbl

[4] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., Eur. Math. Soc., Zürich, 2007 | MR | Zbl

[5] Gromov M., Geometric group theory, v. 2, London Math. Soc. Lecture Note Sci., 182, Asymptotic invariants of infinite groups, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl

[6] Hume D., Sisto A., “Embedding universal covers of graph manifolds in products of trees”, Proc. Amer. Math. Soc., 141:10 (2013), 3337–3340 | DOI | MR | Zbl

[7] Kapovich M., Leeb B., “$3$-manifold groups and nonpositive curvature”, Geom. Funct. Anal., 8:5 (1998), 841–852 | DOI | MR | Zbl

[8] Skot P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986

[9] Smirnov A. V., “Kvazi-izometricheskoe vlozhenie fundamentalnoi gruppy ortogonalnogo graf-mnogoobraziya v proizvedenie derevev”, Algebra i analiz, 24:5 (2012), 165–180 | MR | Zbl