Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_6_a7, author = {A. V. Smirnov}, title = {Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds}, journal = {Algebra i analiz}, pages = {230--247}, publisher = {mathdoc}, volume = {29}, number = {6}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/} }
TY - JOUR AU - A. V. Smirnov TI - Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds JO - Algebra i analiz PY - 2017 SP - 230 EP - 247 VL - 29 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/ LA - ru ID - AA_2017_29_6_a7 ER -
%0 Journal Article %A A. V. Smirnov %T Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds %J Algebra i analiz %D 2017 %P 230-247 %V 29 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/ %G ru %F AA_2017_29_6_a7
A. V. Smirnov. Four-dimensional graph-manifolds with fundamental groups quasi-isometric to fundamental groups of orthogonal graph-manifolds. Algebra i analiz, Tome 29 (2017) no. 6, pp. 230-247. http://geodesic.mathdoc.fr/item/AA_2017_29_6_a7/
[1] Waldhausen F., “Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. I”, Invent. Math., 3 (1967), 308–333 | DOI | MR | Zbl
[2] Waldhausen F., “Eine Klasse von $3$-dimensionalen Mannigfaltigkeiten. II”, Invent. Math., 4 (1967), 87–117 | DOI | MR | Zbl
[3] Buyalo S. V., Kobelskii V. L., “Obobschennye grafmnogoobraziya nepolozhitelnoi krivizny”, Algebra i analiz, 11:2 (1999), 64–87 | MR | Zbl
[4] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., Eur. Math. Soc., Zürich, 2007 | MR | Zbl
[5] Gromov M., Geometric group theory, v. 2, London Math. Soc. Lecture Note Sci., 182, Asymptotic invariants of infinite groups, Cambridge Univ. Press, Cambridge, 1993 | MR | Zbl
[6] Hume D., Sisto A., “Embedding universal covers of graph manifolds in products of trees”, Proc. Amer. Math. Soc., 141:10 (2013), 3337–3340 | DOI | MR | Zbl
[7] Kapovich M., Leeb B., “$3$-manifold groups and nonpositive curvature”, Geom. Funct. Anal., 8:5 (1998), 841–852 | DOI | MR | Zbl
[8] Skot P., Geometrii na trekhmernykh mnogoobraziyakh, Mir, M., 1986
[9] Smirnov A. V., “Kvazi-izometricheskoe vlozhenie fundamentalnoi gruppy ortogonalnogo graf-mnogoobraziya v proizvedenie derevev”, Algebra i analiz, 24:5 (2012), 165–180 | MR | Zbl