Nisnevich sheafification of homotopy invariant presheaves with Witt-transfers
Algebra i analiz, Tome 29 (2017) no. 6, pp. 1-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_6_a0,
     author = {A. E. Druzhinin},
     title = {Nisnevich sheafification of homotopy invariant presheaves with {Witt-transfers}},
     journal = {Algebra i analiz},
     pages = {1--34},
     publisher = {mathdoc},
     volume = {29},
     number = {6},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_6_a0/}
}
TY  - JOUR
AU  - A. E. Druzhinin
TI  - Nisnevich sheafification of homotopy invariant presheaves with Witt-transfers
JO  - Algebra i analiz
PY  - 2017
SP  - 1
EP  - 34
VL  - 29
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_6_a0/
LA  - ru
ID  - AA_2017_29_6_a0
ER  - 
%0 Journal Article
%A A. E. Druzhinin
%T Nisnevich sheafification of homotopy invariant presheaves with Witt-transfers
%J Algebra i analiz
%D 2017
%P 1-34
%V 29
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_6_a0/
%G ru
%F AA_2017_29_6_a0
A. E. Druzhinin. Nisnevich sheafification of homotopy invariant presheaves with Witt-transfers. Algebra i analiz, Tome 29 (2017) no. 6, pp. 1-34. http://geodesic.mathdoc.fr/item/AA_2017_29_6_a0/

[1] Altman A., Kleiman S., Introduction to Grothendieck duality theory, Lecture Notes in Math., 146, Springer-Verlag, Berlin, 1970 | DOI | MR | Zbl

[2] Ananievskiy A., Levine M., Panin I. A., Witt sheaves and the $\eta$-inverted sphere spectrum, Preprint, arXiv: 1504.04860 | MR

[3] Balmer P., “Witt groups”, Handbook of $K$-theory, v. 2, Springer, Berlin, 2005, 539–576 | DOI | MR

[4] Voevodsky V., “Triangulated categories of motives over a field”, Cycles, Transfers and Motivic Homology Theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 188–238 | MR | Zbl

[5] Voevodsky V., “Cohomological theory of presheaves with transfers”, Cycles, Transfers and Motivic Homology Theories, Ann. of Math. Stud., 143, Princeton Univ. Press, Princeton, NJ, 2000, 87–137 | MR | Zbl

[6] Voevodsky V., Suslin A., “Bloch–Kato conjecture and motivic cohomology with finite coefficients”, The Arithmetic and Geometry of Algebraic Cycles (Banff, AB, 1998), NATO Sci. Ser. C Math. Phys. Sci., 548, Kluwer Acad. Publ., Dordrecht, 2000, 117–189 | MR | Zbl

[7] Druzhinin A., Triangulated category of effective Witt-motives $DWM^-_{eff}(k)$, Preprint, arXiv: 1601.05383

[8] Druzhinin A. E., “Sokhranenie gomotopicheskoi invariantnosti predpuchkov s Witt-transferami pri puchkovanii”, Zap. nauch. semin. POMI, 423, 2014, 113–125 | MR

[9] Druzhinin A. E., “O gomotopicheski invariantnykh predpuchkakh s Witt-transferami”, Uspekhi mat. nauk, 69:3 (2014), 181–182 | DOI | MR | Zbl

[10] Ojanguren M., Panin I., “A Purity theorem for the Witt group”, Ann. Sci. Ecole Norm. Sup. (4), 32:1 (1999), 71–86 | DOI | MR | Zbl

[11] Hartshorne R., Algebraic geometry, Grad. Texts in Math., 52, Springer-Verlag, New York, 1977 | DOI | MR | Zbl

[12] Chepurkin K., “Teorema in'ektivnosti dlya gomotopicheski invariantnykh predpuchkov s Vitt-transferami”, Algebra i analiz, 28:2 (2016), 227–237 | MR