On Nevanlinna domains with fractal boundaries
Algebra i analiz, Tome 29 (2017) no. 5, pp. 90-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_5_a3,
     author = {M. Ya. Mazalov},
     title = {On {Nevanlinna} domains with fractal boundaries},
     journal = {Algebra i analiz},
     pages = {90--110},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_5_a3/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - On Nevanlinna domains with fractal boundaries
JO  - Algebra i analiz
PY  - 2017
SP  - 90
EP  - 110
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_5_a3/
LA  - ru
ID  - AA_2017_29_5_a3
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T On Nevanlinna domains with fractal boundaries
%J Algebra i analiz
%D 2017
%P 90-110
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_5_a3/
%G ru
%F AA_2017_29_5_a3
M. Ya. Mazalov. On Nevanlinna domains with fractal boundaries. Algebra i analiz, Tome 29 (2017) no. 5, pp. 90-110. http://geodesic.mathdoc.fr/item/AA_2017_29_5_a3/

[1] Mazalov M. Ya., Paramonov P. V., Fedorovskii K. Yu., “Usloviya $C^m$-priblizhaemosti funktsii resheniyami ellipticheskikh uravnenii”, Uspekhi mat. nauk, 67:6 (2012), 53–100 | DOI | MR | Zbl

[2] Karmona Kh. Kh., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | DOI | MR | Zbl

[3] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Mat. zametki, 59:4 (1996), 604–610 | DOI | MR | Zbl

[4] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 7:2 (1952), 31–122 | MR | Zbl

[5] Baranov A. D., Fedorovskii K. Yu., “Regulyarnost granits nevanlinnovskikh oblastei i odnolistnye funktsii v modelnykh podprostranstvakh”, Mat. sb., 202:12 (2011), 3–22 | DOI | MR | Zbl

[6] Fedorovskii K. Yu., “Approksimatsiya i granichnye svoistva polianaliticheskikh funktsii”, Tr. Mat. in-ta RAN, 235, 2001, 262–271 | MR | Zbl

[7] Mazalov M. Ya., “Primer nespryamlyaemogo nevanlinnovskogo kontura”, Algebra i analiz, 27:4 (2015), 50–58 | MR

[8] Fedorovskii K. Yu., “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Tr. mat. in-ta RAN, 235, 2006, 204–213 | MR

[9] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR

[10] Falconer K. J., The geometry of fractal sets, Cambridge Tracts Math., 85, Cambridge Univ., Cambridge, 1986 | MR