Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_5_a3, author = {M. Ya. Mazalov}, title = {On {Nevanlinna} domains with fractal boundaries}, journal = {Algebra i analiz}, pages = {90--110}, publisher = {mathdoc}, volume = {29}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_5_a3/} }
M. Ya. Mazalov. On Nevanlinna domains with fractal boundaries. Algebra i analiz, Tome 29 (2017) no. 5, pp. 90-110. http://geodesic.mathdoc.fr/item/AA_2017_29_5_a3/
[1] Mazalov M. Ya., Paramonov P. V., Fedorovskii K. Yu., “Usloviya $C^m$-priblizhaemosti funktsii resheniyami ellipticheskikh uravnenii”, Uspekhi mat. nauk, 67:6 (2012), 53–100 | DOI | MR | Zbl
[2] Karmona Kh. Kh., Paramonov P. V., Fedorovskii K. Yu., “O ravnomernoi approksimatsii polianaliticheskimi mnogochlenami i zadache Dirikhle dlya bianaliticheskikh funktsii”, Mat. sb., 193:10 (2002), 75–98 | DOI | MR | Zbl
[3] Fedorovskii K. Yu., “O ravnomernykh priblizheniyakh funktsii $n$-analiticheskimi polinomami na spryamlyaemykh konturakh v $\mathbb C$”, Mat. zametki, 59:4 (1996), 604–610 | DOI | MR | Zbl
[4] Mergelyan S. N., “Ravnomernye priblizheniya funktsii kompleksnogo peremennogo”, Uspekhi mat. nauk, 7:2 (1952), 31–122 | MR | Zbl
[5] Baranov A. D., Fedorovskii K. Yu., “Regulyarnost granits nevanlinnovskikh oblastei i odnolistnye funktsii v modelnykh podprostranstvakh”, Mat. sb., 202:12 (2011), 3–22 | DOI | MR | Zbl
[6] Fedorovskii K. Yu., “Approksimatsiya i granichnye svoistva polianaliticheskikh funktsii”, Tr. Mat. in-ta RAN, 235, 2001, 262–271 | MR | Zbl
[7] Mazalov M. Ya., “Primer nespryamlyaemogo nevanlinnovskogo kontura”, Algebra i analiz, 27:4 (2015), 50–58 | MR
[8] Fedorovskii K. Yu., “O nekotorykh svoistvakh i primerakh nevanlinnovskikh oblastei”, Tr. mat. in-ta RAN, 235, 2006, 204–213 | MR
[9] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[10] Falconer K. J., The geometry of fractal sets, Cambridge Tracts Math., 85, Cambridge Univ., Cambridge, 1986 | MR