Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_5_a0, author = {S. V. Buyalo}, title = {M\"obius structures and timed causal spaces on the circle}, journal = {Algebra i analiz}, pages = {1--50}, publisher = {mathdoc}, volume = {29}, number = {5}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_5_a0/} }
S. V. Buyalo. M\"obius structures and timed causal spaces on the circle. Algebra i analiz, Tome 29 (2017) no. 5, pp. 1-50. http://geodesic.mathdoc.fr/item/AA_2017_29_5_a0/
[1] Andersson L., Barbot T., Benedetti R., Bonsante F., Goldman W., Labourie F., Scannell K., Schlenker J.-M., “Notes on “Lorents spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45] by G. Mess”, Geom. Dedicata, 126 (2007), 47–70 | DOI | MR | Zbl
[2] Bridson M., Haefliger A., Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl
[3] Busemann H., “Timelike spaces”, Dissertationes Math. Rozprawy Mat., 53 (1967), 1–52 | MR
[4] Buyalo S. V., “Mebiusovy i submebiusovy struktury”, Algebra i analiz, 28:5 (2016), 1–20 | MR
[5] Buyalo S., Deformation of Möbius structures, Preprint
[6] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., Eur. Math. Soc. (EMS), Zürich, 2007 | MR | Zbl
[7] Buyalo S., Schroeder V., “Möbius characterization of the boundary at infinity of rank one symmetric spaces”, Geom. Dedicata, 172:1 (2014), 1–45 | DOI | MR | Zbl
[8] Buyalo S., Schroeder V., “Incidence axioms for the boundary at infinity of complex hyperbolic spaces”, Anal. Geom. Metr. Spaces, 3 (2015), 244–277 | MR | Zbl
[9] Buyalo S., Schroeder V., Möbius structures on the circle, in preparation
[10] Foertsch T., Schroeder V., “Metric Möbius geometry and a characterization of spheres”, Manuscripta Math., 140:3–4 (2013), 613–620 | DOI | MR | Zbl
[11] Gerhardt C., Pinching estimates for dual flows in hyperbolic and de Sitter space, 2015, arXiv: 1510.03747[math.DG]
[12] Mess G., “Lorentz spacetimes of constant curvature”, Geom. Dedicata, 126:1 (2007), 3–45 | DOI | MR | Zbl
[13] Papadopoulos A., Yamada S., Timelike Hilbert and Funk geometries, 2016, arXiv: 1602.07072[math.DG]
[14] Rozenfeld B., Neevklidovy prostrantsva, Nauka, M., 1969
[15] Spradlin M., Strominger A., Volovich A., Les Houches lectures on de Sitter space, 2001, arXiv: hep-th/0110007
[16] Yu H., Dual flows in hyperbolic space and de Sitter space, 2016, arXiv: 1604.02369[math.DG]