M\"obius structures and timed causal spaces on the circle
Algebra i analiz, Tome 29 (2017) no. 5, pp. 1-50.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_5_a0,
     author = {S. V. Buyalo},
     title = {M\"obius structures and timed causal spaces on the circle},
     journal = {Algebra i analiz},
     pages = {1--50},
     publisher = {mathdoc},
     volume = {29},
     number = {5},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_5_a0/}
}
TY  - JOUR
AU  - S. V. Buyalo
TI  - M\"obius structures and timed causal spaces on the circle
JO  - Algebra i analiz
PY  - 2017
SP  - 1
EP  - 50
VL  - 29
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_5_a0/
LA  - ru
ID  - AA_2017_29_5_a0
ER  - 
%0 Journal Article
%A S. V. Buyalo
%T M\"obius structures and timed causal spaces on the circle
%J Algebra i analiz
%D 2017
%P 1-50
%V 29
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_5_a0/
%G ru
%F AA_2017_29_5_a0
S. V. Buyalo. M\"obius structures and timed causal spaces on the circle. Algebra i analiz, Tome 29 (2017) no. 5, pp. 1-50. http://geodesic.mathdoc.fr/item/AA_2017_29_5_a0/

[1] Andersson L., Barbot T., Benedetti R., Bonsante F., Goldman W., Labourie F., Scannell K., Schlenker J.-M., “Notes on “Lorents spacetimes of constant curvature” [Geom. Dedicata 126 (2007), 3–45] by G. Mess”, Geom. Dedicata, 126 (2007), 47–70 | DOI | MR | Zbl

[2] Bridson M., Haefliger A., Metric spaces of non-positive curvature, Grundlehren Math. Wiss., 319, Springer-Verlag, Berlin, 1999 | DOI | MR | Zbl

[3] Busemann H., “Timelike spaces”, Dissertationes Math. Rozprawy Mat., 53 (1967), 1–52 | MR

[4] Buyalo S. V., “Mebiusovy i submebiusovy struktury”, Algebra i analiz, 28:5 (2016), 1–20 | MR

[5] Buyalo S., Deformation of Möbius structures, Preprint

[6] Buyalo S., Schroeder V., Elements of asymptotic geometry, EMS Monogr. Math., Eur. Math. Soc. (EMS), Zürich, 2007 | MR | Zbl

[7] Buyalo S., Schroeder V., “Möbius characterization of the boundary at infinity of rank one symmetric spaces”, Geom. Dedicata, 172:1 (2014), 1–45 | DOI | MR | Zbl

[8] Buyalo S., Schroeder V., “Incidence axioms for the boundary at infinity of complex hyperbolic spaces”, Anal. Geom. Metr. Spaces, 3 (2015), 244–277 | MR | Zbl

[9] Buyalo S., Schroeder V., Möbius structures on the circle, in preparation

[10] Foertsch T., Schroeder V., “Metric Möbius geometry and a characterization of spheres”, Manuscripta Math., 140:3–4 (2013), 613–620 | DOI | MR | Zbl

[11] Gerhardt C., Pinching estimates for dual flows in hyperbolic and de Sitter space, 2015, arXiv: 1510.03747[math.DG]

[12] Mess G., “Lorentz spacetimes of constant curvature”, Geom. Dedicata, 126:1 (2007), 3–45 | DOI | MR | Zbl

[13] Papadopoulos A., Yamada S., Timelike Hilbert and Funk geometries, 2016, arXiv: 1602.07072[math.DG]

[14] Rozenfeld B., Neevklidovy prostrantsva, Nauka, M., 1969

[15] Spradlin M., Strominger A., Volovich A., Les Houches lectures on de Sitter space, 2001, arXiv: hep-th/0110007

[16] Yu H., Dual flows in hyperbolic space and de Sitter space, 2016, arXiv: 1604.02369[math.DG]