Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_4_a6, author = {B. M. Bekker and Yu. G. Zarhin}, title = {The divisibility by~$2$ of rational points on elliptic curves}, journal = {Algebra i analiz}, pages = {196--239}, publisher = {mathdoc}, volume = {29}, number = {4}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_4_a6/} }
B. M. Bekker; Yu. G. Zarhin. The divisibility by~$2$ of rational points on elliptic curves. Algebra i analiz, Tome 29 (2017) no. 4, pp. 196-239. http://geodesic.mathdoc.fr/item/AA_2017_29_4_a6/
[1] Bombieri E., Gubler W., Heights in Diophantine geometry, New Math. Monogr., 4, Cambridge Univ. Press, Cambridge, 2006 | MR | Zbl
[2] Buhler J. P., “Elliptic curves, modular forms and applications”, Arithmetic Algebraic Geometry, IAS/Park City Math. Ser., 9, Amer. Math. Soc., Providence, RI, 2001, 5–81 | DOI | MR | Zbl
[3] Cassels J. W. C., “Diophantine equations with special reference to elliptic curves”, J. London Math. Soc., 41 (1966), 193–291 | DOI | MR
[4] Hüsemoller D., Elliptic curves, Grad. Texts in Math., 111, Second ed., Springer-Verlag, New York, 2004 | MR | Zbl
[5] Kamienny S., “Torsion points on elliptic curves and $q$-coefficients of modular forms”, Invent. Math., 109:2 (1992), 221–229 | DOI | MR | Zbl
[6] Kamienny S., Najman F., “Torsion groups of elliptic curves over quadratic fields”, Acta Arith., 152:3 (2012), 291–305 | DOI | MR | Zbl
[7] Kenku M. A., Momose F., “Torsion points on elliptic curves defined over quadratic fields”, Nagoya Math. J., 109 (1988), 125–149 | DOI | MR | Zbl
[8] Knapp A., Elliptic curves, Math. Notes, 40, Princeton Univ. Press, Princeton, NJ, 1992 | MR | Zbl
[9] Kubert D. S., “Universal bounds on the torsion of elliptic curves”, Proc. London Math. Soc. (3), 33:2 (1976), 193–237 | DOI | MR | Zbl
[10] Lang S., Elliptic curves: Diophantine analysis, Grundlehren Math. Wiss., 231, Springer-Verlag, Berlin–New York, 1978 | DOI | MR | Zbl
[11] Lozano-Robledo A., Elliptic curves, modular forms and their $L$-functions, Stud. Math. Libr., 58, Amer. Math. Soc., Providence, RI, 2011 | DOI | MR | Zbl
[12] Mazur B., “Modular curves and the Eisenstein ideal”, Inst. Hautes Études Sci. Publ. Math., 47 (1977), 33–186 | DOI | MR | Zbl
[13] Schaefer E., “$2$-descent on the Jacobians of hyperelliptic curves”, J. Number Theory, 51:2 (1995), 219–232 | DOI | MR | Zbl
[14] Schappacher N., Schoof R., “Beppo Levi and the arithmetic of elliptic curves”, Math. Intelligencer, 18:1 (1996), 57–69 | DOI | MR | Zbl
[15] Silverberg A., “Explicit families of elliptic curves with prescribed mod $N$ representations”, Modular Forms and Fermat's Last Theorem, Springer-Verlag, New York, 1997, 447–461 | DOI | MR | Zbl
[16] Silverberg A., “Open questions in arithmetic algebraic geometry”, Arithmetic Algebraic Geometry, IAS/Park City Math. Ser., 9, Amer. Math. Soc., Providence, RI, 2001, 83–142 | DOI | MR | Zbl
[17] Silverman J. S., Arithmetic of elliptic curves, Grad. Texts in Math., 106, Second ed., Springer, Dordrecht, 2009 | DOI | MR | Zbl
[18] Silverman J. S., Tate J. T., Rational points on elliptic curves, Undegrad. Texts Math., Second ed., Springer, Cham, 2015 | DOI | MR | Zbl
[19] Shioda T., “On rational points of the generic elliptic curve with level $N$ structure over the field of modular functions of level $N$”, J. Math. Soc. Japan, 25 (1973), 144–157 | DOI | MR
[20] Tate J., “Algebraic formulas in arbitrary characteristic. Appendix 1”: S. Lang, Elliptic functions, Second ed., Springer-Verlag, New York, 1987, 299–306 | MR
[21] Washington L. C., Elliptic curves. Number theory and cryptography, Discrete Math. Appl. (Boca Raton), Second ed., Chapman Hall/CRC, Boca Raton, FL, 2008 | MR | Zbl
[22] Yelton J., “Dyadic torsion of elliptic curves”, Eur. J. Math., 1:4 (2015), 704–716 | DOI | MR | Zbl