On the Sidon inequality for trigonometric polynomials
Algebra i analiz, Tome 29 (2017) no. 4, pp. 140-158.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_4_a4,
     author = {A. O. Radomskii},
     title = {On the {Sidon} inequality for trigonometric polynomials},
     journal = {Algebra i analiz},
     pages = {140--158},
     publisher = {mathdoc},
     volume = {29},
     number = {4},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_4_a4/}
}
TY  - JOUR
AU  - A. O. Radomskii
TI  - On the Sidon inequality for trigonometric polynomials
JO  - Algebra i analiz
PY  - 2017
SP  - 140
EP  - 158
VL  - 29
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_4_a4/
LA  - ru
ID  - AA_2017_29_4_a4
ER  - 
%0 Journal Article
%A A. O. Radomskii
%T On the Sidon inequality for trigonometric polynomials
%J Algebra i analiz
%D 2017
%P 140-158
%V 29
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_4_a4/
%G ru
%F AA_2017_29_4_a4
A. O. Radomskii. On the Sidon inequality for trigonometric polynomials. Algebra i analiz, Tome 29 (2017) no. 4, pp. 140-158. http://geodesic.mathdoc.fr/item/AA_2017_29_4_a4/

[1] Sidon S., “Verallgemeinerung eines Satzes über die absolute Konvergenz von Fourierreihen mit Lücken”, Math. Ann., 97:1 (1927), 675–676 | DOI | MR | Zbl

[2] Riesz F., “Über die Fourier–Koeffizienten einer stetiger Funktionen von beschränkter Schwankung”, Math. Z., 2:3–4 (1918), 312–315 | DOI | MR | Zbl

[3] Sidon S., “Über orthogonale Entwicklungen”, Acta Univ. Szeged. Sect. Sci. Math., 10 (1943), 206–253 | MR | Zbl

[4] Stechkin S. B., “Ob absolyutnoi skhodimosti ryadov Fure”, Izv. AN SSSR. Ser. mat., 20:3 (1956), 385–412 | MR | Zbl

[5] Pisier G., “De nouvelles caractérisations des ensembles de Sidon”, Mathematical Analysis and its Applications, Pt. B, Adv. in Math. Suppl. Stud., 7b, Acad. Press, New York, 1981, 685–726 | MR

[6] Pisier G., “Conditions d'entropie et caractérisations arithmétiques des ensembles de Sidon”, Topics in Modern Harmonic Analysis, v. II, Ist. Naz. Alta Mat. F. Severi, Roma, 1983, 911–944 | MR

[7] Pisier G., “Arithmetic characterizations of Sidon sets”, Bull. Amer. Math. Soc. (N.S.), 8:1 (1983), 87–89 | DOI | MR | Zbl

[8] Kashin B. S., Temlyakov V. N., “Ob odnoi norme i svyazannykh s nei prilozheniyakh”, Mat. zametki, 64:4 (1998), 637–640 | DOI | MR | Zbl

[9] Kashin B. S., Temlyakov V. N., “Ob odnoi norme i approksimatsionnykh kharakteristikakh klassov funktsii mnogikh peremennykh”, Metricheskaya teoriya funktsii i smezhnye voprosy analiza, Sb. st., AFTs, M., 1999, 69–99 | MR

[10] Radomskii A. O., “Ob odnom neravenstve tipa Sidona dlya trigonometricheskikh polinomov”, Mat. zametki, 89:4 (2011), 589–595 | DOI | MR | Zbl

[11] Radomskii A. O., “O vozmozhnosti usileniya neravenstv tipa Sidona”, Mat. zametki, 94:5 (2013), 792–795 | DOI | MR | Zbl

[12] Radomskii A. O., Neravenstva tipa Sidona i nekotorye svoistva prostranstva kvazinepreryvnykh funktsii, Kand. diss., MGU, M., 2014

[13] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFTs, M., 1999 | MR

[14] Grigorev P. G., “Ob odnoi posledovatelnosti trigonometricheskikh polinomov”, Mat. zametki, 61:6 (1997), 935–938 | DOI | MR | Zbl

[15] Radomskii A. O., “O neekvivalentnosti $C$- i $QC$-norm v prostranstve trigonometricheskikh polinomov”, Mat. sb., 207:12 (2016), 110–123 | DOI | MR | Zbl

[16] Grigorev P. G., Radomskii A. O., “Nekotorye trigonometricheskie polinomy s ekstremalno maloi ravnomernoi normoi”, Mat. zametki, 98:2 (2015), 196–203 | DOI | MR | Zbl

[17] Temlyakov V. N., Approximation of periodic functions, Computat. Math. Anal. Ser., Nova Sci. Publ., Commack, NY, 1993 | MR | Zbl

[18] Zigmund A., Trigonometricheskie ryady, v. I, II, Mir, M., 1965 | MR

[19] Radomskii A. O., “O neravenstve tipa Sidona dlya diskretnykh ortonormirovannykh sistem”, Mat. zametki, 101:4 (2017), 582–587 | DOI | MR | Zbl