Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_3_a3, author = {G. Panina}, title = {Oriented area is a~perfect {Morse} function}, journal = {Algebra i analiz}, pages = {61--69}, publisher = {mathdoc}, volume = {29}, number = {3}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_3_a3/} }
G. Panina. Oriented area is a~perfect Morse function. Algebra i analiz, Tome 29 (2017) no. 3, pp. 61-69. http://geodesic.mathdoc.fr/item/AA_2017_29_3_a3/
[1] Fomenko A. T., Topologicheskie variatsionnye zadachi, Izd-vo MGU, M., 1984 | MR
[2] Klyachko A., “Spatial polygons and stable configurations of points in the projective line”, Algebraic Geometry and its Applications, Proc. 8th Algebraic Geometry Conf. (Yaroslavl', August 10–14, 1992), Vieweg. Aspects Math., 25, Braunschweig, 1994, 67–84 | DOI | MR | Zbl
[3] Khimshiashvili G., Panina G., “Cyclic polygons are critical points of area”, Zap. nauch. semin. POMI, 360, 2008, 238–245 | MR | Zbl
[4] Milnor J., Lectures on the $h$-cobordism theorem, Princeton Univ. Press, Princeton, 1965 | MR | Zbl
[5] Khristoforov M., Panina G., “Swap action on moduli spaces of polygonal linkages”, J. Math. Sci., 195:2 (2013), 237–244 | DOI | MR | Zbl
[6] Panina G., Zhukova A., “Morse index of a cyclic polygon”, Cent. Eur. J. Math., 9:2 (2011), 364–377 | DOI | MR | Zbl
[7] Smale S., “Generalized Poincares conjecture in dimensions greater than four”, Ann. of Math., 74:2 (1961), 391–406 | DOI | MR | Zbl
[8] Switzer R., Algebraic topology-homotopy and homology, Grundlehren Math. Wiss., 213, Springer-Verlag, New York–Heidelberg, 1975 | MR
[9] Zhukova A., “Indeks Morsa tsiklicheskogo mnogougolnika. II”, Algebra i analiz, 24:3 (2012), 128–147 | MR | Zbl