Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_2_a7, author = {N. Filonov}, title = {Absolute continuity of {2D} {Schr\"odinger} operator with partially periodic coefficients}, journal = {Algebra i analiz}, pages = {220--241}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a7/} }
N. Filonov. Absolute continuity of 2D Schr\"odinger operator with partially periodic coefficients. Algebra i analiz, Tome 29 (2017) no. 2, pp. 220-241. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a7/
[1] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl
[2] Exner P., Frank R., “Absolute continuity of the spectrum for periodically modulated leaky wires in $\mathbb R^3$”, Ann. Henri Poincaré, 8:2 (2007), 241–263 | DOI | MR | Zbl
[3] Frank R., Shterenberg R., “On the spectrum of partially periodic operators”, Oper. Theory Adv. Appl., 174, Birkhaüser, Basel, 2007, 35–50 | DOI | MR | Zbl
[4] Filonov N., Kachkovskiy I., On the structure of band edges of 2D periodic elliptic operators, Preprint, 2015, arXiv: 1510.04367
[5] Filonov N., Klopp F., “Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others”, Doc. Math., 9 (2004), 107–121 | MR | Zbl
[6] Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, Zap. nauch. semin. POMI, 318, 2004, 298–307 | MR | Zbl
[7] Hempel R., Herbst I., “Bands and gaps for periodic magnetic Hamiltonians”, Oper. Theory Adv. Appl., 78, Birkhäuser, Basel, 1995, 175–184 | MR | Zbl
[8] Hoang V., Radosz M., “Absence of bound states for waveguides in 2D periodic structures”, J. Math. Phys., 55:3 (2014), 033506 | DOI | MR | Zbl
[9] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR
[10] Kuchment P., An overview of periodic elliptic operators, Preprint, 2015, arXiv: 1510.00971 | MR
[11] Thomas L., “Time dependent approach to scattering from impurities in a crystal”, Comm. Math. Phys., 33 (1973), 335–343 | DOI | MR
[12] Van der Varden B. L., Algebra, Nauka, M., 1979 | MR
[13] Yafaev D. R., Matematicheskaya teoriya rasseyaniya, Izd-vo SPbGU, SPb, 1994 | MR