Absolute continuity of 2D Schr\"odinger operator with partially periodic coefficients
Algebra i analiz, Tome 29 (2017) no. 2, pp. 220-241.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_2_a7,
     author = {N. Filonov},
     title = {Absolute continuity of {2D} {Schr\"odinger} operator with partially periodic coefficients},
     journal = {Algebra i analiz},
     pages = {220--241},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a7/}
}
TY  - JOUR
AU  - N. Filonov
TI  - Absolute continuity of 2D Schr\"odinger operator with partially periodic coefficients
JO  - Algebra i analiz
PY  - 2017
SP  - 220
EP  - 241
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_2_a7/
LA  - ru
ID  - AA_2017_29_2_a7
ER  - 
%0 Journal Article
%A N. Filonov
%T Absolute continuity of 2D Schr\"odinger operator with partially periodic coefficients
%J Algebra i analiz
%D 2017
%P 220-241
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_2_a7/
%G ru
%F AA_2017_29_2_a7
N. Filonov. Absolute continuity of 2D Schr\"odinger operator with partially periodic coefficients. Algebra i analiz, Tome 29 (2017) no. 2, pp. 220-241. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a7/

[1] Birman M. Sh., Suslina T. A., “Periodicheskii magnitnyi gamiltonian s peremennoi metrikoi. Problema absolyutnoi nepreryvnosti”, Algebra i analiz, 11:2 (1999), 1–40 | MR | Zbl

[2] Exner P., Frank R., “Absolute continuity of the spectrum for periodically modulated leaky wires in $\mathbb R^3$”, Ann. Henri Poincaré, 8:2 (2007), 241–263 | DOI | MR | Zbl

[3] Frank R., Shterenberg R., “On the spectrum of partially periodic operators”, Oper. Theory Adv. Appl., 174, Birkhaüser, Basel, 2007, 35–50 | DOI | MR | Zbl

[4] Filonov N., Kachkovskiy I., On the structure of band edges of 2D periodic elliptic operators, Preprint, 2015, arXiv: 1510.04367

[5] Filonov N., Klopp F., “Absolute continuity of the spectrum of a Schrödinger operator with a potential which is periodic in some directions and decays in others”, Doc. Math., 9 (2004), 107–121 | MR | Zbl

[6] Filonov N., Sobolev A. V., “Absence of the singular continuous component in the spectrum of analytic direct integrals”, Zap. nauch. semin. POMI, 318, 2004, 298–307 | MR | Zbl

[7] Hempel R., Herbst I., “Bands and gaps for periodic magnetic Hamiltonians”, Oper. Theory Adv. Appl., 78, Birkhäuser, Basel, 1995, 175–184 | MR | Zbl

[8] Hoang V., Radosz M., “Absence of bound states for waveguides in 2D periodic structures”, J. Math. Phys., 55:3 (2014), 033506 | DOI | MR | Zbl

[9] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[10] Kuchment P., An overview of periodic elliptic operators, Preprint, 2015, arXiv: 1510.00971 | MR

[11] Thomas L., “Time dependent approach to scattering from impurities in a crystal”, Comm. Math. Phys., 33 (1973), 335–343 | DOI | MR

[12] Van der Varden B. L., Algebra, Nauka, M., 1979 | MR

[13] Yafaev D. R., Matematicheskaya teoriya rasseyaniya, Izd-vo SPbGU, SPb, 1994 | MR