Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom
Algebra i analiz, Tome 29 (2017) no. 2, pp. 59-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_2_a2,
     author = {M. A. Lyalinov},
     title = {Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom},
     journal = {Algebra i analiz},
     pages = {59--88},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a2/}
}
TY  - JOUR
AU  - M. A. Lyalinov
TI  - Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom
JO  - Algebra i analiz
PY  - 2017
SP  - 59
EP  - 88
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_2_a2/
LA  - ru
ID  - AA_2017_29_2_a2
ER  - 
%0 Journal Article
%A M. A. Lyalinov
%T Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom
%J Algebra i analiz
%D 2017
%P 59-88
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_2_a2/
%G ru
%F AA_2017_29_2_a2
M. A. Lyalinov. Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom. Algebra i analiz, Tome 29 (2017) no. 2, pp. 59-88. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a2/

[1] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl

[2] Pelinovskii E. N., Nelineinaya dinamika voln tsunami, In-t prikl. fiziki AN SSSR, Gorkii, 1982

[3] Buslaev V. S., Fedotov A. A., “Uravnenie Kharpera: monodromizatsiya bez kvaziklassiki”, Algebra i analiz, 8:2 (1996), 65–97 | MR | Zbl

[4] Faddeev L., Kashaev R., Volkov A., “Strongly coupled quantum discrete Liouville theory: algebraic approach and duality”, Comm. Math. Phys., 219:1 (2001), 199–219 | DOI | MR | Zbl

[5] Fedotov A., Sandomirskiy F., “An exact renormalization formula for the Mariland model”, Comm. Math. Phys., 334:2 (2015), 1083–1099 | DOI | MR | Zbl

[6] Malyuzhinets G. D., “Vozbuzhdenie, otrazhenie i izluchenie poverkhnostnykh voln na kline s zadannymi impedansami granei”, Dokl. AN SSSR, 121:3 (1958), 436–439 | MR

[7] Bernard J.-M. L., Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, CEA-DIST, Saclay, 1997, (erratum in J. Phys A, 32 L45); an extended version: Advanced theory of diffraction by a semi-infinite impedance cone, Alpha Sci. Ser. Wave Phenom., Alpha Sci. Ltd, Oxford, 2014

[8] Babich V. M., Lyalinov M. A., Grikurov V. E., Diffraction theory. The Sommerfeld–Malyuzhinets technique, Alpha Sci. Ser. Wave Phenom., Alpha Sci. Ltd, Oxford, 2008

[9] Lazutkin V. F., “Analiticheskie integraly polustandartnogo otobrazheniya i rasscheplenie separatris”, Algebra i analiz, 1:2 (1989), 116–131 | MR | Zbl

[10] Lyalinov M. A., Zhu N. Y., Scattering of waves by wedges and cones with impedance boundary conditions, Mario Boella Ser. Electromagn. Inform. Comm., SciTech-IET, Edison, NJ, 2013

[11] Lawrie J. B., King A. C., “Exact solution to a class of the functional difference equations with application to a moving contact line flow”, European. J. Appl. Math., 5:2 (1994), 141–157 | DOI | MR | Zbl

[12] Lyalinov M. A., “Eigenmodes of an infinite pool with cone-shaped bottom”, J. Fluid Mech., 800 (2016), 645–665 | DOI | MR

[13] Roseau M., “Short waves parallel to the shore over a sloping beach”, Comm. Pure Appl. Math., 11 (1958), 433–493 | DOI | MR | Zbl

[14] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991

[15] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 32, 1988, 99–215 | MR | Zbl

[16] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1–4, Mir, M., 1986 | MR

[17] Flajolet Ph., Gourdon X., Dumas Ph., “Mellin transforms and asymptotics: harmonic sums”, Theoret. Comput. Sci., 144:1–2 (1995), 3–58 | DOI | MR | Zbl

[18] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR

[19] Mikhlin S. G., Prössdorf S., Singular integral operators, Springer-Verlag, Berlin, 1986 | MR | Zbl