Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_2_a2, author = {M. A. Lyalinov}, title = {Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom}, journal = {Algebra i analiz}, pages = {59--88}, publisher = {mathdoc}, volume = {29}, number = {2}, year = {2017}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a2/} }
TY - JOUR AU - M. A. Lyalinov TI - Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom JO - Algebra i analiz PY - 2017 SP - 59 EP - 88 VL - 29 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2017_29_2_a2/ LA - ru ID - AA_2017_29_2_a2 ER -
M. A. Lyalinov. Functional difference equations in the problem of the forced oscillations of liquid in an infinite pool with conical bottom. Algebra i analiz, Tome 29 (2017) no. 2, pp. 59-88. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a2/
[1] Kuznetsov N., Maz'ya V., Vainberg B., Linear water waves, Cambridge Univ. Press, Cambridge, 2002 | MR | Zbl
[2] Pelinovskii E. N., Nelineinaya dinamika voln tsunami, In-t prikl. fiziki AN SSSR, Gorkii, 1982
[3] Buslaev V. S., Fedotov A. A., “Uravnenie Kharpera: monodromizatsiya bez kvaziklassiki”, Algebra i analiz, 8:2 (1996), 65–97 | MR | Zbl
[4] Faddeev L., Kashaev R., Volkov A., “Strongly coupled quantum discrete Liouville theory: algebraic approach and duality”, Comm. Math. Phys., 219:1 (2001), 199–219 | DOI | MR | Zbl
[5] Fedotov A., Sandomirskiy F., “An exact renormalization formula for the Mariland model”, Comm. Math. Phys., 334:2 (2015), 1083–1099 | DOI | MR | Zbl
[6] Malyuzhinets G. D., “Vozbuzhdenie, otrazhenie i izluchenie poverkhnostnykh voln na kline s zadannymi impedansami granei”, Dokl. AN SSSR, 121:3 (1958), 436–439 | MR
[7] Bernard J.-M. L., Méthode analytique et transformées fonctionnelles pour la diffraction d'ondes par une singularité conique: équation intégrale de noyau non oscillant pour le cas d'impédance constante, Rapport CEA-R-5764, CEA-DIST, Saclay, 1997, (erratum in J. Phys A, 32 L45); an extended version: Advanced theory of diffraction by a semi-infinite impedance cone, Alpha Sci. Ser. Wave Phenom., Alpha Sci. Ltd, Oxford, 2014
[8] Babich V. M., Lyalinov M. A., Grikurov V. E., Diffraction theory. The Sommerfeld–Malyuzhinets technique, Alpha Sci. Ser. Wave Phenom., Alpha Sci. Ltd, Oxford, 2008
[9] Lazutkin V. F., “Analiticheskie integraly polustandartnogo otobrazheniya i rasscheplenie separatris”, Algebra i analiz, 1:2 (1989), 116–131 | MR | Zbl
[10] Lyalinov M. A., Zhu N. Y., Scattering of waves by wedges and cones with impedance boundary conditions, Mario Boella Ser. Electromagn. Inform. Comm., SciTech-IET, Edison, NJ, 2013
[11] Lawrie J. B., King A. C., “Exact solution to a class of the functional difference equations with application to a moving contact line flow”, European. J. Appl. Math., 5:2 (1994), 141–157 | DOI | MR | Zbl
[12] Lyalinov M. A., “Eigenmodes of an infinite pool with cone-shaped bottom”, J. Fluid Mech., 800 (2016), 645–665 | DOI | MR
[13] Roseau M., “Short waves parallel to the shore over a sloping beach”, Comm. Pure Appl. Math., 11 (1958), 433–493 | DOI | MR | Zbl
[14] Nazarov S. A., Plamenevskii B. A., Ellipticheskie zadachi v oblastyakh s kusochno gladkoi granitsei, Nauka, M., 1991
[15] Kondratev V. A., Landis E. M., “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhn. Sovrem. probl. mat. Fundam. napravleniya, 32, 1988, 99–215 | MR | Zbl
[16] Khërmander L., Analiz lineinykh differentsialnykh operatorov s chastnymi proizvodnymi, v. 1–4, Mir, M., 1986 | MR
[17] Flajolet Ph., Gourdon X., Dumas Ph., “Mellin transforms and asymptotics: harmonic sums”, Theoret. Comput. Sci., 144:1–2 (1995), 3–58 | DOI | MR | Zbl
[18] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, Fizmatgiz, M., 1963 | MR
[19] Mikhlin S. G., Prössdorf S., Singular integral operators, Springer-Verlag, Berlin, 1986 | MR | Zbl