On global attractors and radiation damping for nonrelativistic particle coupled to scalar field
Algebra i analiz, Tome 29 (2017) no. 2, pp. 34-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Hamiltonian system of a scalar wave field and a single nonrelativistic particle coupled in a translation invariant manner is considered. The particle is also subject to a confining external potential. The stationary solutions of the system are Coulomb type wave fields centered at those particle positions for which the external force vanishes. It is proved that the solutions of finite energy converge, in suitable local energy seminorms, to the set $\mathcal S$ of all stationary states in the long time limit $t\to\pm\infty$. Next it is shown that the rate of relaxation to a stable stationary state is determined by the spatial decay of initial data. The convergence is followed by the radiation of the dispersion wave that is a solution of the free wave equation. Similar relaxation has been proved previously for the case of a relativistic particle when the speed of the particle is less than the speed of light. Now these results are extended to a nonrelativistic particle with arbitrary superlight velocity. However, the research is restricted to the plane particle trajectories in $\mathbb R^3$. Extension to the general case remains an open problem.
Keywords: Hamiltonian system, nonrelativistic particle, wave equation with a source, extended electron.
@article{AA_2017_29_2_a1,
     author = {A. Komech and E. Kopylova and H. Spohn},
     title = {On global attractors and radiation damping for nonrelativistic particle coupled to scalar field},
     journal = {Algebra i analiz},
     pages = {34--58},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a1/}
}
TY  - JOUR
AU  - A. Komech
AU  - E. Kopylova
AU  - H. Spohn
TI  - On global attractors and radiation damping for nonrelativistic particle coupled to scalar field
JO  - Algebra i analiz
PY  - 2017
SP  - 34
EP  - 58
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_2_a1/
LA  - en
ID  - AA_2017_29_2_a1
ER  - 
%0 Journal Article
%A A. Komech
%A E. Kopylova
%A H. Spohn
%T On global attractors and radiation damping for nonrelativistic particle coupled to scalar field
%J Algebra i analiz
%D 2017
%P 34-58
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_2_a1/
%G en
%F AA_2017_29_2_a1
A. Komech; E. Kopylova; H. Spohn. On global attractors and radiation damping for nonrelativistic particle coupled to scalar field. Algebra i analiz, Tome 29 (2017) no. 2, pp. 34-58. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a1/

[1] Abraham M., “Prinzipien der Dynamik des Elektrons”, Ann. Phys., 10 (1903), 105–179 | Zbl

[2] Buslaev V. S., Perelman G. S., “Rasseyanie dlya nelineinogo uravneniya Shredingera: sostoyaniya, blizkie k solitonu”, Algebra i analiz, 4:6 (1992), 63–102 | MR | Zbl

[3] Buslaev V. S., Perelman G. S., “On the stability of solitary waves for nonlinear Schrödinger equations”, Nonlinear Evolution Equations, Amer. Math. Soc. Transl. Ser. 2, 164, Amer. Math. Soc., Providence, RI, 1995, 75–98 | MR | Zbl

[4] Buslaev V. S., Sulem C., “On asymptotic stability of solitary waves for nonlinear Schrödinger equations”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20:3 (2003), 419–475 | DOI | MR | Zbl

[5] Fröhlich J., Gang Z., “Emission of Cherenkov radiation as a mechanism for Hamiltonian friction”, Adv. Math., 264 (2014), 183–235 | DOI | MR | Zbl

[6] Jackson J. D., Classical Electrodynamics, John Wiley Sons, New York, NY, 1962 | MR

[7] Imaikin V., Komech A., Spohn H., “Scattering theory for a particle coupled to a scalar field”, Discrete Cont. Dyn. Syst., 10:1–2 (2004), 387–396 | MR | Zbl

[8] Imaikin V., Komech A., Markowich P., “Scattering of solitons of the Klein–Gordon equation coupled to a classical particle”, J. Math. Phys., 44:3 (2003), 1202–1217 | DOI | MR | Zbl

[9] Imaikin V., Komech A., Spohn H., “Soliton-type asymptotics and scattering for a charge coupled to the Maxwell field”, Russ. J. Math. Phys., 9:4 (2002), 428–436 | MR | Zbl

[10] Imaikin V., Komech A., Spohn H., “Rotating charge coupled to the Maxwell field: scattering theory and adiabatic limit”, Monatsh. Math., 142:1–2 (2004), 143–156 | DOI | MR | Zbl

[11] Imaikin V., Komech A., Mauser N., “Soliton-type asymptotics for the coupled Maxwell–Lorentz equations”, Ann. H. Poincaré, 5:6 (2004), 1117–1135 | DOI | MR | Zbl

[12] Komech A. I., “On attractor of a singular nonlinear $U(1)$-invariant Klein–Gordon equation”, Progress in Analysis (Berlin, 2001), v. I, II, World Sci. Publ., River Edge, NJ, 2003, 599–611 | DOI | MR | Zbl

[13] Komech A. I., Komech A. A., “Global attractor for a nonlinear oscillator coupled to the Klein–Gordon field”, Arch. Ration. Mech. Anal., 185:1 (2007), 105–142 | DOI | MR | Zbl

[14] Komech A. I., Komech A. A., “On global attraction to solitary waves for the Klein–Gordon field coupled to several nonlinear oscillators”, J. Math. Pures App., 93:1 (2010), 91–111 | DOI | MR | Zbl

[15] Komech A. I., Komech A. A., “Global attraction to solitary waves for Klein–Gordon equation with mean field interaction”, Ann. Inst. H. Poincaré Anal. Non Lineaire, 26:3 (2009), 855–868 | DOI | MR | Zbl

[16] Komech A. I., Komech A. A., “Global attraction to solitary waves for nonlinear Dirac equation with mean field interaction”, SIAM J. Math. Anal., 42:6 (2010), 2944–2964 | DOI | MR | Zbl

[17] Komech A. I., Quantum Mechanics: Genesis and Achievements, Springer, Dordrecht, 2013 | MR | Zbl

[18] Komech A. I., “Attractors of nonlinear Hamilton PDEs”, Discrete Contin. Dyn. Syst., 36:11 (2016), 6201–6256 | DOI | MR | Zbl

[19] Komech A. I., Kopylova E. A., Dispersion Decay and Scattering Theory, Wiley Sons, Hoboken, HJ, 2012 | MR | Zbl

[20] Komech A., Spohn H., “Soliton-like asymptotics for a classical particle interacting with a scalar wave field”, Nonlinear Anal., 33:1 (1998), 13–24 | DOI | MR | Zbl

[21] Kopylova E. A., Komech A. I., “Asymptotic stability of stationary states in the wave equation coupled to a nonrelativistic particle”, Russ. J. Math. Phys., 23:1 (2016), 93–100 | DOI | MR | Zbl

[22] Komech A., Spohn H., Kunze M., “Long-time asymptotics for a classical particle interacting with a scalar wave field”, Comm. Partial Differential Equations, 22:1–2 (1997), 307–335 | MR | Zbl

[23] Komech A., Spohn H., “Long-time asymptotics for the coupled Maxwell–Lorentz equations”, Comm. Partial Differential Equations, 25:3–4 (2000), 559–585 | DOI | MR

[24] Kopylova E., “Weighted energy decay for 3D wave equation”, Asymptot. Anal., 65:1–2 (2009), 1–16 | MR | Zbl

[25] Rudin W., Functional Analysis, McGraw Hill, New York, 1973 | MR | Zbl

[26] Sigal I. M., “Nonlinear wave and Schrödinger equations. I. Instability of periodic and quasiperiodic solutions”, Comm. Math. Phys., 153:2 (1993), 297–320 | DOI | MR | Zbl

[27] Soffer A., Weinstein M. I., “Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations”, Invent. Math., 136:1 (1999), 9–74 | DOI | MR | Zbl

[28] Spohn H., Dynamics of Charged Particles and Their Radiation Field, Cambridge Univ. Press, Cambridge, 2004 | MR | Zbl

[29] Soffer A., Weinstein M. I., “Multichannel nonlinear scattering for nonintegrable equations”, Comm. Math. Phys., 133:1 (1990), 119–146 | DOI | MR | Zbl

[30] Soffer A., Weinstein M. I., “Multichannel nonlinear scattering for nonintegrable equations. II. The case of anisotropic potentials and data”, J. Differential Equations, 98:2 (1992), 376–390 | DOI | MR | Zbl