Wave model of the Sturm--Liouville operator on the half-line
Algebra i analiz, Tome 29 (2017) no. 2, pp. 3-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2017_29_2_a0,
     author = {M. I. Belishev and S. A. Siminov},
     title = {Wave model of the {Sturm--Liouville} operator on the half-line},
     journal = {Algebra i analiz},
     pages = {3--33},
     publisher = {mathdoc},
     volume = {29},
     number = {2},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_2_a0/}
}
TY  - JOUR
AU  - M. I. Belishev
AU  - S. A. Siminov
TI  - Wave model of the Sturm--Liouville operator on the half-line
JO  - Algebra i analiz
PY  - 2017
SP  - 3
EP  - 33
VL  - 29
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_2_a0/
LA  - ru
ID  - AA_2017_29_2_a0
ER  - 
%0 Journal Article
%A M. I. Belishev
%A S. A. Siminov
%T Wave model of the Sturm--Liouville operator on the half-line
%J Algebra i analiz
%D 2017
%P 3-33
%V 29
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_2_a0/
%G ru
%F AA_2017_29_2_a0
M. I. Belishev; S. A. Siminov. Wave model of the Sturm--Liouville operator on the half-line. Algebra i analiz, Tome 29 (2017) no. 2, pp. 3-33. http://geodesic.mathdoc.fr/item/AA_2017_29_2_a0/

[1] Belishev M. I., “K zadache Katsa o vosstanovlenii formy oblasti po spektru zadachi Dirikhle”, Zap. nauch. semin. LOMI, 173, 1988, 30–41 | MR | Zbl

[2] Belishev M. I., Demchenko M. N., “Dinamicheskaya sistema s granichnym upravleniem, assotsiirovannaya s simmetricheskim poluogranichennym operatorom”, Zap. nauch. semin. POMI, 409, 2012, 17–39 | MR

[3] Birkgof G., Teoriya reshetok, Nauka, M., 1984 | MR

[4] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostanstve, Izd-vo LGU, L., 1980 | MR

[5] Vishik M. I., “Ob obschikh kraevykh zadachakh dlya ellipticheskikh differentsialnykh uravnenii”, Tr. Mosk. mat. o-va, 1, 1952, 187–246 | MR | Zbl

[6] Kelli D., Obschaya topologiya, Nauka, M., 1981 | MR

[7] Kolmogorov A. N., Fomin S. V., Elementy teorii funktsii i funktsionalnogo analiza, Nauka, M., 1989 | MR

[8] Kochubei A. N., “O rasshireniyakh simmetricheskikh operatorov i simmetricheskikh binarnykh otnoshenii”, Mat. zametki, 17:1 (1975), 41–48 | MR | Zbl

[9] Naimark M. A., Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[10] Shtraus A. V., “Funktsionalnye modeli i obobschennye spektralnye funktsii simmetricheskikh operatorov”, Algebra i analiz, 10:5 (1998), 1–76 | MR | Zbl

[11] Belishev M. I., “Boundary control in reconstruction of manifolds and metrics (the BC method)”, Inverse Problems, 13:5 (1997), R1–R45 | DOI | MR | Zbl

[12] Belishev M. I., “Recent progress in the boundary control method”, Inverse Problems, 23:5 (2007), R1–R67 | DOI | MR | Zbl

[13] Belishev M. I., “Nest spectrum of symmetric operator and reconstruction of manifolds”, Proc. Workshops Inverse Problems, Data, Math. Stat. and Ecology, LiTH-MAT-R-2011/11-SE, Dep. Math. Linköping Univ., Linköping, 2011, 6–14

[14] Belishev M. I., “A unitary invariant of a semi-bounded operator in reconstruction of manifolds”, J. Operator Theory, 69:2 (2013), 299–326 | DOI | MR | Zbl

[15] Belishev M. I., Demchenko M. N., “Elements of noncommutative geometry in inverse problems on manifolds”, J. Geom. Phys., 78 (2014), 29–47 | DOI | MR | Zbl

[16] Derkach V. A., Malamud M. M., “The extension theory of hermitian operators and the moment problem”, J. Math. Sci., 73:2 (1995), 141–242 | DOI | MR | Zbl

[17] Kim J. M., “Compactness in $\mathcal B(X)$”, J. Math. Anal. Appl., 320 (2006), 619–631 | DOI | MR | Zbl

[18] Ryzhov V., “A general boundary value problem and its Weyl function”, Opuscula Math., 27:2 (2007), 305–331 | MR | Zbl