Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2017_29_1_a7, author = {N. Lebedeva and A. Petrunin}, title = {On the total curvature of minimizing geodesics on convex surfaces}, journal = {Algebra i analiz}, pages = {189--208}, publisher = {mathdoc}, volume = {29}, number = {1}, year = {2017}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a7/} }
N. Lebedeva; A. Petrunin. On the total curvature of minimizing geodesics on convex surfaces. Algebra i analiz, Tome 29 (2017) no. 1, pp. 189-208. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a7/
[1] Agarwal P. K., Har-Peled S., Sharir M., Varadarajan K. R., “Approximating shortest paths on a convex polytope in three dimensions”, J. ACM, 44:4 (1997), 567–584 | DOI | MR | Zbl
[2] Pach J., “Folding and turning along geodesics in a convex surface”, Geombinatorics, 7:2 (1997), 61–65 | MR | Zbl
[3] Bárány I., Kuperberg K., Zamfirescu T., “Total curvature and spiralling shortest paths”, Discrete Comput. Geom., 30:2 (2003), 167–176 | DOI | MR | Zbl
[4] Liberman I. M., “Geodezicheskie linii na vypuklykh poverkhnostyakh”, Dokl. AN SSSR, 32:5 (1941), 310–313 | MR | Zbl
[5] Usov V. V., “O dline sfericheskogo izobrazheniya geodezicheskoi na vypukloi poverkhnosti”, Sib. mat. zh., 17:1 (1976), 233–236 | MR | Zbl
[6] Berg I. D., “An estimate on the total curvature of a geodesic in Euclidean $3$-space-with-boundary”, Geom. Dedicata, 13:1 (1982), 1–6 | DOI | MR | Zbl
[7] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969 | MR
[8] Zalgaller V. A., “Vopros o sfericheskom izobrazhenii kratchaishei”, Ukr. geom. sb., 10 (1971), 12–18 | Zbl
[9] Milka A. D., “Kratchaishaya s nespryamlyaemym sfericheskim izobrazheniem”, Ukr. geom. sb., 16 (1974), 35–52 | MR | Zbl
[10] Usov V. V., “O prostranstvennom povorote krivykh na vypuklykh poverkhnostyakh”, Sib. mat. zh., 17:6 (1976), 1427–1430 | MR | Zbl
[11] Petrunin A., “Applications of quasigeodesics and gradient curves”, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997, 203–219 | MR | Zbl