On the total curvature of minimizing geodesics on convex surfaces
Algebra i analiz, Tome 29 (2017) no. 1, pp. 189-208.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give a universal upper bound for the total curvature of a minimizing geodesic on a convex surface in the Euclidean space.
Keywords: geodesic, curvature, Liberman's lemma, development, tongue.
@article{AA_2017_29_1_a7,
     author = {N. Lebedeva and A. Petrunin},
     title = {On the total curvature of minimizing geodesics on convex surfaces},
     journal = {Algebra i analiz},
     pages = {189--208},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a7/}
}
TY  - JOUR
AU  - N. Lebedeva
AU  - A. Petrunin
TI  - On the total curvature of minimizing geodesics on convex surfaces
JO  - Algebra i analiz
PY  - 2017
SP  - 189
EP  - 208
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_1_a7/
LA  - en
ID  - AA_2017_29_1_a7
ER  - 
%0 Journal Article
%A N. Lebedeva
%A A. Petrunin
%T On the total curvature of minimizing geodesics on convex surfaces
%J Algebra i analiz
%D 2017
%P 189-208
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_1_a7/
%G en
%F AA_2017_29_1_a7
N. Lebedeva; A. Petrunin. On the total curvature of minimizing geodesics on convex surfaces. Algebra i analiz, Tome 29 (2017) no. 1, pp. 189-208. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a7/

[1] Agarwal P. K., Har-Peled S., Sharir M., Varadarajan K. R., “Approximating shortest paths on a convex polytope in three dimensions”, J. ACM, 44:4 (1997), 567–584 | DOI | MR | Zbl

[2] Pach J., “Folding and turning along geodesics in a convex surface”, Geombinatorics, 7:2 (1997), 61–65 | MR | Zbl

[3] Bárány I., Kuperberg K., Zamfirescu T., “Total curvature and spiralling shortest paths”, Discrete Comput. Geom., 30:2 (2003), 167–176 | DOI | MR | Zbl

[4] Liberman I. M., “Geodezicheskie linii na vypuklykh poverkhnostyakh”, Dokl. AN SSSR, 32:5 (1941), 310–313 | MR | Zbl

[5] Usov V. V., “O dline sfericheskogo izobrazheniya geodezicheskoi na vypukloi poverkhnosti”, Sib. mat. zh., 17:1 (1976), 233–236 | MR | Zbl

[6] Berg I. D., “An estimate on the total curvature of a geodesic in Euclidean $3$-space-with-boundary”, Geom. Dedicata, 13:1 (1982), 1–6 | DOI | MR | Zbl

[7] Pogorelov A. V., Vneshnyaya geometriya vypuklykh poverkhnostei, Nauka, M., 1969 | MR

[8] Zalgaller V. A., “Vopros o sfericheskom izobrazhenii kratchaishei”, Ukr. geom. sb., 10 (1971), 12–18 | Zbl

[9] Milka A. D., “Kratchaishaya s nespryamlyaemym sfericheskim izobrazheniem”, Ukr. geom. sb., 16 (1974), 35–52 | MR | Zbl

[10] Usov V. V., “O prostranstvennom povorote krivykh na vypuklykh poverkhnostyakh”, Sib. mat. zh., 17:6 (1976), 1427–1430 | MR | Zbl

[11] Petrunin A., “Applications of quasigeodesics and gradient curves”, Math. Sci. Res. Inst. Publ., 30, Cambridge Univ. Press, Cambridge, 1997, 203–219 | MR | Zbl