Endomorphism rings of reductions of elliptic curves and Abelian varieties
Algebra i analiz, Tome 29 (2017) no. 1, pp. 110-144.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $E$ be an elliptic curve without CM that is defined over a number field $K$. For all but finitely many non-Archimedean places $v$ of $K$ there is a reduction $E(v)$ of $E$ at $v$ that is an elliptic curve over the residue field $k(v)$ at $v$. The set of $v$'s with ordinary $E(v)$ has density 1 (Serre). For such $v$ the endomorphism ring $\operatorname{End}(E(v))$ of $E(v)$ is an order in an imaginary quadratic field. We prove that for any pair of relatively prime positive integers $N$ and $M$ there are infinitely many non-Archimedean places $v$ of $K$ such that the discriminant $\boldsymbol\Delta(\mathbf v)$ of $\operatorname{End}(E(v))$ is divisible by $N$ and the ratio $\frac{\boldsymbol\Delta(\mathbf v)}N$ is relatively prime to $NM$. We also discuss similar questions for reductions of Abelian varieties. The subject of this paper was inspired by an exercise in Serre's "Abelian $\ell$-adic representations and elliptic curves" and questions of Mihran Papikian and Alina Cojocaru.
Keywords: absolute Galois group, Abelian variety, general linear group, Tate module, Frobenius element.
@article{AA_2017_29_1_a5,
     author = {Yu. G. Zarhin},
     title = {Endomorphism rings of reductions of elliptic curves and {Abelian} varieties},
     journal = {Algebra i analiz},
     pages = {110--144},
     publisher = {mathdoc},
     volume = {29},
     number = {1},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a5/}
}
TY  - JOUR
AU  - Yu. G. Zarhin
TI  - Endomorphism rings of reductions of elliptic curves and Abelian varieties
JO  - Algebra i analiz
PY  - 2017
SP  - 110
EP  - 144
VL  - 29
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2017_29_1_a5/
LA  - en
ID  - AA_2017_29_1_a5
ER  - 
%0 Journal Article
%A Yu. G. Zarhin
%T Endomorphism rings of reductions of elliptic curves and Abelian varieties
%J Algebra i analiz
%D 2017
%P 110-144
%V 29
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2017_29_1_a5/
%G en
%F AA_2017_29_1_a5
Yu. G. Zarhin. Endomorphism rings of reductions of elliptic curves and Abelian varieties. Algebra i analiz, Tome 29 (2017) no. 1, pp. 110-144. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a5/

[1] Bogomolov F. A., “Sur l'algébricité des repréesentations $\ell$-adiques”, C. R. Acad. Sci. Paris Sér. A-B, 290:15 (1980), 701–703 | MR | Zbl

[2] Bogomolov F. A., “Tochki konechnogo poryadka na abelevom mnogoobrazii”, Izv. AN SSSR. Ser. mat., 44:6 (1978), 1227–1287 | MR | Zbl

[3] Borel A., Linear algebraic groups, W. A. Benjamin, Inc., New York–Amsterdam, 1969 | MR | Zbl

[4] Faltings G., “Endlichkeitssätze für abelsche Varietäten über Zählkorpern”, Invent. Math., 73 (1983), 349–366 ; “Erratum”, Invent. Math., 75 (1984), 381 | DOI | MR | Zbl | DOI | MR

[5] Faltings G., “Complements to Mordell”, Rational Points (Bonn, 1983/1984), Aspects Math., E6, Vieweg Sohn, Braunschweig, 1984, 203–227 | MR

[6] Harder G., “Eine Bemerkung zum schwachen Approximationssatz”, Arc. Math., 19 (1968), 465–471 | DOI | MR | Zbl

[7] Lang S., Abelian varieties, 2nd ed., Springer-Verlag, Berlin, 1983 | MR | Zbl

[8] Larsen M., Pink R., “On $\ell$-independence of algebraic monodromy groups in compatible systems of representations”, Invent. Math., 107:3 (1992), 603–636 | DOI | MR | Zbl

[9] Milne J. S., Étale cohomology, Princeton Math. Ser., 33, Princeton Univ. Press, 1980 | MR

[10] Moret-Bailly L., Pinceaux de variétés abéliennes, Astérisque, 129, 1985 | MR

[11] Mumford D., Abelian varieties, 2nd ed., Oxford Univ. Press, London, 1974 | MR | Zbl

[12] Oort F., “Endomorphism algebras of abelian varieties”, Algebraic Geometry and Commutative Algebra, v. II, Kinokuniya, Tokyo, 1988, 469–502 | DOI | MR

[13] Schoof R., “The exponents of the groups of points on the reductions of an elliptic curve”, Arithmetic Algebraic Geometry, Progr. Math., 89, Birkhäuser, Boston–Basel, 1991, 325–336 | MR

[14] Serre J.-P., Corps locaux, Publ. Univ. Nancago, 8, Hermann, Paris, 1968 | MR

[15] Serre J.-P., Abelian $\ell$-adic representations and elliptic curves, 2nd ed., Addison-Wesley Publ., Redwood City, CA, 1989 | MR | Zbl

[16] Serre J.-P., “Lettres á Ken Ribet du 1/1/1981 et 29/1/1981”, Euvres, Collected Papers, v. IV, Springer-Verlag, Berlin, 2000, 1–20 | MR

[17] Serre J.-P., “Quelques applications du théorème de densité de Chebotarev”, Publ. Math. IHES, 54 (1981), 123–201 | DOI | MR

[18] Serre J.-P., Tate J., “Good reduction of abelian varieties”, Ann. of Math. (2), 88 (1968), 492–517 | DOI | MR | Zbl

[19] Tate J., “Algebraic cycles and poles of zeta functions”, Arithmetical Algebraic Geometry, Harper and Row, New York, 1965, 93–110 | MR

[20] Tate J., “Endomorphisms of Abelian varieties over finite fields”, Invent. Math., 2 (1966), 134–144 | DOI | MR | Zbl

[21] Zarkhin Yu. G., “Endomorfizmy abelevykh mnogoobrazii nad polyami konechnoi kharakteristiki”, Izv. AN SSSR. Ser. mat., 39:2 (1975), 272–277 | MR | Zbl

[22] Zarkhin Yu. G., “Abelevy mnogoobraziya v kharakteristike $P$”, Mat. zametki, 19:3 (1976), 393–400 | MR | Zbl

[23] Zarkhin Yu. G., “Ob uravneniyakh, opredelyayuschikh moduli abelevykh mnogoobrazii s endomorfizmami iz vpolne veschestvennogo polya”, Tr. Mosk. mat. o-va, 42, 1981, 3–49 | MR | Zbl

[24] Zarhin Yu. G., “Very simple $2$-adic representations and hyperelliptic Jacobians”, Moscow Math. J., 2:2 (2002), 403–431 | MR | Zbl

[25] Zarhin Yu. G., “Families of absolutely simple hyperelliptic jacobians”, Proc. London Math. Soc., 100:1 (2010), 24–54 | DOI | MR | Zbl

[26] Zarhin Yu. G., “Abelian varieties over fields of finite characteristic”, Cent. Eur. J. Math., 12:5 (2014), 659–674 | MR | Zbl

[27] Zarhin Yu. G., “Galois groups of Mori trinomials and hyperelliptic curves with big monodromy”, Eur. J. Math., 2:1 (2016), 360–381 | DOI | MR | Zbl

[28] Zarhin Yu. G., “Two-dimensional families of hyperelliptic jacobians with big monodromy”, Trans. Amer. Math. Soc., 368:5 (2016), 3651–3672 | DOI | MR | Zbl

[29] Zarhin Yu. G., Parshin A. N., “Finiteness problems in Diophantine geometry”, Amer. Math. Soc. Transl. (2), 143 (1989), 35–102; arXiv: 0912.4325[math.NT]

[30] Zywina D., “The splitting of reductions of an abelian variety”, Int. Math. Res. Not. IMRN, 2014:18 (2014), 5042–5083 | MR | Zbl