A survival guide for feeble fish
Algebra i analiz, Tome 29 (2017) no. 1, pp. 49-59
Cet article a éte moissonné depuis la source Math-Net.Ru
As avid anglers, the authors are interested in the survival chances of fish in turbulent oceans. This paper addresses this question mathematically. It is shown that a fish with bounded aquatic locomotion speed can reach any point in the ocean if the fluid velocity is incompressible, bounded, and has small mean drift.
Keywords:
small controls, incompressible flow, reachability.
Mots-clés : G-equation
Mots-clés : G-equation
@article{AA_2017_29_1_a2,
author = {D. Burago and S. Ivanov and A. Novikov},
title = {A survival guide for feeble fish},
journal = {Algebra i analiz},
pages = {49--59},
year = {2017},
volume = {29},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2017_29_1_a2/}
}
D. Burago; S. Ivanov; A. Novikov. A survival guide for feeble fish. Algebra i analiz, Tome 29 (2017) no. 1, pp. 49-59. http://geodesic.mathdoc.fr/item/AA_2017_29_1_a2/
[1] Cardaliaguet P., Souganidis P. E., “Homogenization and enhancement of the $G$-equation in random environments”, Comm. Pure Appl. Math., 66:10 (2013), 1582–1628 | DOI | MR | Zbl
[2] Federer H., Geometric measure theory, Grundlehren Math. Wiss., 153, Springer-Verlag, New York, 1969 | MR | Zbl
[3] Nolen J., Novikov A., “Homogenization of the $G$-equation with incompressible random drift”, Commun. Math. Sci., 9:2 (2011), 561–582 | DOI | MR | Zbl
[4] Peters N., Turbulent combustion, Cambridge Monogr. Mech., Cambridge Univ. Press, Cambridge, 2000 | MR | Zbl
[5] Williams F. A., “Turbulent combustion”, The Mathematics of combustion, ed. J. D. Buckmaster, SIAM, Philadelphia, 1985, 97–131 | DOI | MR