Extension of the Newton–Puiseux algorithm to the case of a nonzero characteristic ground field. I
Algebra i analiz, Tome 28 (2016) no. 6, pp. 147-188
Cet article a éte moissonné depuis la source Math-Net.Ru
The Newton–Puiseux algorithm for constructing roots of polynomials in the field of fractional power series is generalized to the case of a ground field of nonzero characteristic.
Keywords:
Newton broken lines, nonzero characteristic of the ground field, generalization of the Newton-Puiseux expansions.
@article{AA_2016_28_6_a6,
author = {A. L. Chistov},
title = {Extension of the {Newton{\textendash}Puiseux} algorithm to the case of a~nonzero characteristic ground {field.~I}},
journal = {Algebra i analiz},
pages = {147--188},
year = {2016},
volume = {28},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a6/}
}
A. L. Chistov. Extension of the Newton–Puiseux algorithm to the case of a nonzero characteristic ground field. I. Algebra i analiz, Tome 28 (2016) no. 6, pp. 147-188. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a6/
[1] Chistov A. L., “Polynomial complexity of the Newton–Puiseux algorithm”, Lecture Notes in Comput. Sci., 233, Springer, Berlin, 1986, 247–255 | DOI | MR
[2] Chistov A. L., “Effective construction of an algebraic variety nonsingular in codimension one over a ground field of zero characteristic”, Zap. nauch. semin. POMI, 387, 2011, 167–188 | MR
[3] Chistov A. L., “Algoritm polinomialnoi slozhnosti dlya razlozheniya mnogochlenov na neprivodimye mnozhiteli i nakhozhdenie komponent mnogoobraziya v subeksponentsialnoe vremya”, Zap. nauch. semin. LOMI, 137, 1984, 124–188 | MR | Zbl