On local and boundary behaviour of mappings in metric spaces
Algebra i analiz, Tome 28 (2016) no. 6, pp. 118-146.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to maps of metric spaces whose quasiconformal characteristic satisfies certain restrictions of integral nature. In particular, theorems on equicontinuity of a family of homeomorphisms are obtained, as well as some results of their extendibility to isolated points of the boundary of a domain. Under some additional topological assumptions, similar statements hold for more general open discrete maps.
Keywords: Moduli of families of curves and surfaces, maps with bounded and finite distortion, boundary behavior of mappings, metric spaces.
@article{AA_2016_28_6_a5,
     author = {E. A. Sevostyanov},
     title = {On local and boundary behaviour of mappings in metric spaces},
     journal = {Algebra i analiz},
     pages = {118--146},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a5/}
}
TY  - JOUR
AU  - E. A. Sevostyanov
TI  - On local and boundary behaviour of mappings in metric spaces
JO  - Algebra i analiz
PY  - 2016
SP  - 118
EP  - 146
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_6_a5/
LA  - ru
ID  - AA_2016_28_6_a5
ER  - 
%0 Journal Article
%A E. A. Sevostyanov
%T On local and boundary behaviour of mappings in metric spaces
%J Algebra i analiz
%D 2016
%P 118-146
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_6_a5/
%G ru
%F AA_2016_28_6_a5
E. A. Sevostyanov. On local and boundary behaviour of mappings in metric spaces. Algebra i analiz, Tome 28 (2016) no. 6, pp. 118-146. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a5/

[1] Adamowicz T., Shanmugalingam N., “Non-conformal Loewner type estimates for modulus of curve families”, Ann. Acad. Sci. Fenn. Math., 35:2 (2010), 609–626 | DOI | MR | Zbl

[2] Andreian Cazacu C., “On the length-area dilatation”, Complex Var. Theory Appl., 50:7–11 (2005), 765–776 | MR | Zbl

[3] Bishop C. J., Gutlyanskiĭ V. Ya., Martio O., Vuorinen M., “On conformal dilatation in space”, Int. J. Math. Math. Sci., 22 (2003), 1397–1420 | DOI | MR | Zbl

[4] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971

[5] Cristea M., “Local homeomorphisms having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 53:1 (2008), 77–99 | DOI | MR | Zbl

[6] Cristea M., “Open discrete mappings having local $ACL^n$ inverses”, Complex Var. Elliptic Equ., 55:1–3 (2010), 61–90 | DOI | MR | Zbl

[7] Gehring F. W., “The definitions and exceptional sets for quasiconformal mappings”, Ann. Acad. Sci. Fenn. Math., 281 (1960), 1–28 | MR

[8] Golberg A., “Homeomorphisms with finite mean dilatations”, Contemp. Math., 382, Amer. Math. Soc., Providence, RI, 2005, 177–186 | DOI | MR | Zbl

[9] Golberg A., “Differential properties of $(\alpha, Q)$-homeomorphisms”, Further Progress in Analysis, World Sci. Publ., Hackensack, NS, NJ, 2009, 218–228 | DOI | MR | Zbl

[10] Fuglede B., “Extremal length and functional completion”, Acta Math., 98 (1957), 171–219 | DOI | MR | Zbl

[11] Gutlyanskii V. Ya., Ryazanov V. I., Srebro U., Yakubov E., The Beltrami equation: A geometric approach, Dev. Math., 26, Springer, New York, 2012 | MR | Zbl

[12] Heinonen J., Lectures on analysis on metric spaces, Universitext, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[13] Heinonen J., Koskela P., “Quasiconformal maps in metric spaces with controlled geometry”, Acta Math., 181:1 (1998), 1–61 | DOI | MR | Zbl

[14] Hencl S., Koskela P., Lectures on mappings of finite distortion, Lecture Notes in Math., 2096, Springer, Cham, 2014 | DOI | MR | Zbl

[15] Hurewicz W., Wallman H., Dimension theory, Princeton Univ. Press, Princeton, 1948 | MR | Zbl

[16] Ilyutko D. P., Sevost'yanov E. A., On boundary behavior of open discrete mappings on Riemannian manifolds, arXiv: 1508.03278v2

[17] Iwaniec T., Martin G., Geometric function theory and non-linear analysis, Oxford Math. Monogr., Clarendon Press, Oxford, 2001 | MR

[18] Ignatev A., Ryazanov V., “Konechnoe srednee kolebanie v teorii otobrazhenii”, Ukr. mat. vestnik, 2:3 (2005), 395–417 | MR | Zbl

[19] Ignatev A., Ryazanov V., “K teorii granichnogo povedeniya prostranstvennykh otobrazhenii”, Ukr. mat. vestnik, 3:2 (2006), 199–211 | MR | Zbl

[20] Kuratovskii K., Topologiya, v. 2, Mir, M., 1969 | MR

[21] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory, Springer Math. Monogr., New York, 2009 | MR | Zbl

[22] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Math., 448 (1969), 1–40 | MR

[23] Martio O., Rickman S., Väisälä J., “Distortion and singularities of quasiregular mappings”, Ann. Acad. Sci. Fenn. Math., 465 (1970), 1–13 | MR

[24] Martio O., Rickman S., Väisälä J., “Topological and metric properties of quasiregular mappings”, Ann. Acad. Sci. Fenn. Math., 488 (1971), 1–31 | MR

[25] Näkki R., “Boundary behavior of quasiconformal mappings in $n$-space”, Ann. Acad. Sci. Fenn. Math., 484 (1970), 1–50 | MR

[26] Näkki R., Palka B., “Uniform equicontinuity of quasiconformal mappings”, Proc. Amer. Math. Soc., 37:2 (1973), 427–433 | DOI | MR | Zbl

[27] Onninen J., Rajala K., “Quasiregular mappings to generalized manifolds”, J. Anal. Math., 109 (2009), 33–79 | DOI | MR | Zbl

[28] Rajala K., “Mappings of finite distortion: removable singularities for locally homeomorphic mappings”, Proc. Amer. Math. Soc., 132:11 (2004), 3251–3258 | DOI | MR | Zbl

[29] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR

[30] Rickman S., Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl

[31] Ryazanov V. I., Salimov R. R., “Slabo ploskie prostranstva i granitsy v teorii otobrazhenii”, Ukr. mat. vestnik, 4:2 (2007), 199–234 | MR

[32] Sevostyanov E. A., “Teoriya modulei, emkostei i normalnye semeistva otobrazhenii, dopuskayuschikh vetvlenie”, Ukr. mat. vestnik, 4:4 (2007), 582–604 | MR

[33] Sevostyanov E. A., “K teorii ustraneniya osobennostei otobrazhenii s neogranichennoi kharakteristikoi kvazikonformnosti”, Izv. RAN. Ser. mat., 74:1 (2010), 159–174 | DOI | MR | Zbl

[34] Sevostyanov E. A., “O granichnom povedenii otkrytykh diskretnykh otobrazhenii s neogranichennoi kharakteristikoi”, Ukr. mat. zh., 64:6 (2012), 855–859 | Zbl

[35] Sevost'yanov E. A., Skvortsov S. A., On equicontinuity of generalized quasiisometries on Riemannian manifolds, arXiv: 1509.02121v2

[36] Smolovaya E. S., “Granichnoe povedenie koltsevykh $Q$-gomeomorfizmov v metricheskikh prostranstvakh”, Ukr. mat. zh., 62:5 (2010), 682–689 | MR | Zbl

[37] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | DOI | MR | Zbl

[38] Väisälä J., “Modulus and capacity inequalities for quasiregular mappings”, Ann. Acad. Sci. Fenn. Math., 509 (1972), 1–14 | DOI

[39] Vuorinen M., Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin, 1988 | DOI | MR | Zbl