Correcting continuous hypergraphs
Algebra i analiz, Tome 28 (2016) no. 6, pp. 84-90
Cet article a éte moissonné depuis la source Math-Net.Ru
A general result in the spirit of the continuous hypergraph removal lemma is stated and proved: if a “closed” property of values of a measurable function on $[0,1]^n$ holds almost everywhere, then the function may be changed on a set of measure 0 so that this property holds everywhere. It is also shown that in some situations a discrete version fails.
Keywords:
Removal lemma, continuous hypergraph, Ramsey theorem.
@article{AA_2016_28_6_a3,
author = {F. Petrov},
title = {Correcting continuous hypergraphs},
journal = {Algebra i analiz},
pages = {84--90},
year = {2016},
volume = {28},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a3/}
}
F. Petrov. Correcting continuous hypergraphs. Algebra i analiz, Tome 28 (2016) no. 6, pp. 84-90. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a3/
[1] Elek G., Szegedy B., “A measure-theoretic approach to the theory of dense hypergraphs”, Adv. Math., 231:3–4 (2012), 1731–1772 ; arXiv: 0810.4062v2 | DOI | MR | Zbl
[2] Janson S., “Quasi-random graphs and graph limits”, Europ. J. Combin., 32:7 (2011), 1054–1083 | DOI | MR | Zbl
[3] Janson S., “Graph limits and hereditary properties”, Europ. J. Combin., 52, part B (2016), 321–337 | DOI | MR | Zbl
[4] Lovász L., Large networks and graph limits, Amer. Math. Colloq. Publ., 60, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl
[5] Zatitskii P. B., Petrov F. V., “Ob ispravlenii metrik”, Zap. nauch. semin. POMI, 390, 2011, 201–209 ; arXiv: 1112.2380