Correcting continuous hypergraphs
Algebra i analiz, Tome 28 (2016) no. 6, pp. 84-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

A general result in the spirit of the continuous hypergraph removal lemma is stated and proved: if a “closed” property of values of a measurable function on $[0,1]^n$ holds almost everywhere, then the function may be changed on a set of measure 0 so that this property holds everywhere. It is also shown that in some situations a discrete version fails.
Keywords: Removal lemma, continuous hypergraph, Ramsey theorem.
@article{AA_2016_28_6_a3,
     author = {F. Petrov},
     title = {Correcting continuous hypergraphs},
     journal = {Algebra i analiz},
     pages = {84--90},
     publisher = {mathdoc},
     volume = {28},
     number = {6},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_6_a3/}
}
TY  - JOUR
AU  - F. Petrov
TI  - Correcting continuous hypergraphs
JO  - Algebra i analiz
PY  - 2016
SP  - 84
EP  - 90
VL  - 28
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_6_a3/
LA  - ru
ID  - AA_2016_28_6_a3
ER  - 
%0 Journal Article
%A F. Petrov
%T Correcting continuous hypergraphs
%J Algebra i analiz
%D 2016
%P 84-90
%V 28
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_6_a3/
%G ru
%F AA_2016_28_6_a3
F. Petrov. Correcting continuous hypergraphs. Algebra i analiz, Tome 28 (2016) no. 6, pp. 84-90. http://geodesic.mathdoc.fr/item/AA_2016_28_6_a3/

[1] Elek G., Szegedy B., “A measure-theoretic approach to the theory of dense hypergraphs”, Adv. Math., 231:3–4 (2012), 1731–1772 ; arXiv: 0810.4062v2 | DOI | MR | Zbl

[2] Janson S., “Quasi-random graphs and graph limits”, Europ. J. Combin., 32:7 (2011), 1054–1083 | DOI | MR | Zbl

[3] Janson S., “Graph limits and hereditary properties”, Europ. J. Combin., 52, part B (2016), 321–337 | DOI | MR | Zbl

[4] Lovász L., Large networks and graph limits, Amer. Math. Colloq. Publ., 60, Amer. Math. Soc., Providence, RI, 2012 | MR | Zbl

[5] Zatitskii P. B., Petrov F. V., “Ob ispravlenii metrik”, Zap. nauch. semin. POMI, 390, 2011, 201–209 ; arXiv: 1112.2380