Free subgroups in almost subnormal subgroups of general skew linear groups
Algebra i analiz, Tome 28 (2016) no. 5, pp. 220-235.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $D$ be a weakly locally finite division ring and $n$ a positive integer. In this paper, we investigate the problem on the existence of noncyclic free subgroups in noncentral almost subnormal subgroups of the general linear group $\mathrm{GL}_n(D)$. Further, some applications of this fact are also investigated. In particular, all infinite finitely generated almost subnormal subgroups of $\mathrm{GL}_n(D)$ are described.
Keywords: division rings, linear groups, almost subnormal subgroups, noncyclic free subgroups, generalized group identity.
@article{AA_2016_28_5_a5,
     author = {N. K. Ngoc and M. H. Bien and B. X. Hai},
     title = {Free subgroups in almost subnormal subgroups of general skew linear groups},
     journal = {Algebra i analiz},
     pages = {220--235},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a5/}
}
TY  - JOUR
AU  - N. K. Ngoc
AU  - M. H. Bien
AU  - B. X. Hai
TI  - Free subgroups in almost subnormal subgroups of general skew linear groups
JO  - Algebra i analiz
PY  - 2016
SP  - 220
EP  - 235
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a5/
LA  - en
ID  - AA_2016_28_5_a5
ER  - 
%0 Journal Article
%A N. K. Ngoc
%A M. H. Bien
%A B. X. Hai
%T Free subgroups in almost subnormal subgroups of general skew linear groups
%J Algebra i analiz
%D 2016
%P 220-235
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_5_a5/
%G en
%F AA_2016_28_5_a5
N. K. Ngoc; M. H. Bien; B. X. Hai. Free subgroups in almost subnormal subgroups of general skew linear groups. Algebra i analiz, Tome 28 (2016) no. 5, pp. 220-235. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a5/

[1] Artin E., Geometric algebra, Intersci. Publ., Inc., New York–London, 1957 | MR | Zbl

[2] Bachmuth S., “Problem section”, Proc. Second Intern. Conf. Theory of Groups (Canberra, Australia, 1973), Lecture Notes in Math., 372, Springer-Verlag, Berlin, 1974, 736

[3] Bien M. H., “On some subgroups of $D^*$ which satisfy a generalized group identity”, Bull. Korean Math. Soc., 52:4 (2015), 1353–1363 | DOI | MR | Zbl

[4] Bien M. H., Dung D. H., “On normal subgroups of division rings which are radical over a proper division subring”, Studia Sci. Math. Hungar., 51:2 (2014), 231–242 | MR | Zbl

[5] Bien M. H., Kiani D., Ramezan-Nassab M., “Some skew linear groups satisfying generalized group identities”, Comm. Algebra, 44 (2016), 2362–2367 | DOI | MR | Zbl

[6] Bell J. P., Drensky V., Sharifi Y., “Shirshov's theorem and division rings that are left algebraic over a subfield”, J. Pure Appl. Algebra, 217:9 (2013), 1605–1610 | DOI | MR | Zbl

[7] Chiba K., “Free subgroups and free subsemigroups of division rings”, J. Algebra, 184:2 (1996), 570–574 | DOI | MR | Zbl

[8] Deo T. T., Bien M. H., Hai B. X., “On radicality of maximal subgroups in $\mathrm{GL}_n(D)$”, J. Algebra, 365 (2012), 42–49 | DOI | MR | Zbl

[9] Golubchik I. Z., Mikhalev A. V., “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauch. semin. LOMI, 114, 1982, 96–119 | MR | Zbl

[10] Gonçalves J. Z., “Free subgroups of units in group rings”, Canad. Math. Bull., 27:3 (1984), 309–312 | DOI | MR | Zbl

[11] Gonçalves J. Z., “Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings”, Canad. Math. Bull., 27:3 (1984), 365–370 | DOI | MR | Zbl

[12] Gonçalves J. Z., Mandel A., “Are there free groups in division rings?”, Israel J. Math., 53:1 (1986), 69–80 | DOI | MR | Zbl

[13] Gonçalves J. Z., Passman D. S., “Free groups in normal subgroups of the multiplicative group of a division ring”, J. Algebra, 440 (2015), 128–144 | DOI | MR | Zbl

[14] Gonçalves J. Z., Shirvani M., “Algebraic elements as free factors in simple Artinian rings”, Contemp. Math., 499, Amer. Math. Soc., Providence, RI, 2009, 121–125 | DOI | MR | Zbl

[15] Hai B. X., Deo T. T., Bien M. H., “On subgroups of division rings of type 2”, Studia Sci. Math. Hungar., 49:4 (2012), 549–557 | MR | Zbl

[16] Hai B. X., Ngoc N. K., “A note on the existence of non-cyclic free subgroups in division rings”, Arch. Math. (Basel), 101 (2013), 437–443 | DOI | MR | Zbl

[17] Hai B. X., Bien M. H., Deo T. T., On the Gelfand–Kirillov dimension of weakly locally finite division rings, 29 Oct. 2015, arXiv: 1510.08711v1[math.RA]

[18] Hartley B., “Free groups in normal subgroups of unit groups and arithmetic groups”, Contemp. Math., 93, Amer. Math. Soc., Providence, RI, 1989, 173–177 | DOI | MR

[19] Hazrat R., Wadsworth A. R., “On maximal subgroups of the multiplicative group of a division algebra”, J. Algebra, 322:7 (2009), 2528–2543 | DOI | MR | Zbl

[20] Hazrat R., Mahdavi-Hezavehi M., Motiee M., “Multiplicative groups of division rings”, Math. Proc. R. Ir. Acad., 114A:1 (2014), 37–114 | DOI | MR | Zbl

[21] Lam T. Y., A first course in noncommutative rings, Grad. Texts. Math., 131, Springer-Verlag, New York, 1991 | DOI | MR | Zbl

[22] Lichtman A. I., “On subgroups of the multiplicative group of skew fields”, Proc. Amer. Math. Soc., 63:1 (1977), 15–16 | DOI | MR | Zbl

[23] Lichtman A. I., “Free subgroups of normal subgroups of the multiplicative group of skew fields”, Proc. Amer. Math. Soc., 71:2 (1978), 174–178 | DOI | MR | Zbl

[24] Lichtman A. I., “Free subgroups in linear groups over some skew fields”, J. Algebra, 105:1 (1987), 1–28 | DOI | MR | Zbl

[25] Mahdavi-Hezavehi M., Mahmudi M. G., Yasamin M. G. S., “Finitely generated subnormal subgroups of $\mathrm{GL}_n(D)$ are central”, J. Algebra, 225:2 (2000), 517–521 | DOI | MR

[26] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl

[27] Tomanov G. M., “Obobschennye gruppovye tozhdestva v lineinykh gruppakh”, Mat. sb., 123(165):1 (1984), 35–49 | MR | Zbl

[28] Reichstein Z., Vonessen N., “Free subgroups of division algebras”, Comm. Algebra, 23:6 (1995), 2181–2185 | DOI | MR | Zbl

[29] Rowen L. H., Polynomial identities in ring theory, Pure Appl. Math., 84, Acad. Press, New York, 1980 | MR | Zbl

[30] Shirvani M., Wehrfritz B. A. F., Skew linear groups, London Math. Soc. Lecture Note Ser., 118, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl