Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_5_a5, author = {N. K. Ngoc and M. H. Bien and B. X. Hai}, title = {Free subgroups in almost subnormal subgroups of general skew linear groups}, journal = {Algebra i analiz}, pages = {220--235}, publisher = {mathdoc}, volume = {28}, number = {5}, year = {2016}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a5/} }
TY - JOUR AU - N. K. Ngoc AU - M. H. Bien AU - B. X. Hai TI - Free subgroups in almost subnormal subgroups of general skew linear groups JO - Algebra i analiz PY - 2016 SP - 220 EP - 235 VL - 28 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a5/ LA - en ID - AA_2016_28_5_a5 ER -
N. K. Ngoc; M. H. Bien; B. X. Hai. Free subgroups in almost subnormal subgroups of general skew linear groups. Algebra i analiz, Tome 28 (2016) no. 5, pp. 220-235. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a5/
[1] Artin E., Geometric algebra, Intersci. Publ., Inc., New York–London, 1957 | MR | Zbl
[2] Bachmuth S., “Problem section”, Proc. Second Intern. Conf. Theory of Groups (Canberra, Australia, 1973), Lecture Notes in Math., 372, Springer-Verlag, Berlin, 1974, 736
[3] Bien M. H., “On some subgroups of $D^*$ which satisfy a generalized group identity”, Bull. Korean Math. Soc., 52:4 (2015), 1353–1363 | DOI | MR | Zbl
[4] Bien M. H., Dung D. H., “On normal subgroups of division rings which are radical over a proper division subring”, Studia Sci. Math. Hungar., 51:2 (2014), 231–242 | MR | Zbl
[5] Bien M. H., Kiani D., Ramezan-Nassab M., “Some skew linear groups satisfying generalized group identities”, Comm. Algebra, 44 (2016), 2362–2367 | DOI | MR | Zbl
[6] Bell J. P., Drensky V., Sharifi Y., “Shirshov's theorem and division rings that are left algebraic over a subfield”, J. Pure Appl. Algebra, 217:9 (2013), 1605–1610 | DOI | MR | Zbl
[7] Chiba K., “Free subgroups and free subsemigroups of division rings”, J. Algebra, 184:2 (1996), 570–574 | DOI | MR | Zbl
[8] Deo T. T., Bien M. H., Hai B. X., “On radicality of maximal subgroups in $\mathrm{GL}_n(D)$”, J. Algebra, 365 (2012), 42–49 | DOI | MR | Zbl
[9] Golubchik I. Z., Mikhalev A. V., “Obobschennye gruppovye tozhdestva v klassicheskikh gruppakh”, Zap. nauch. semin. LOMI, 114, 1982, 96–119 | MR | Zbl
[10] Gonçalves J. Z., “Free subgroups of units in group rings”, Canad. Math. Bull., 27:3 (1984), 309–312 | DOI | MR | Zbl
[11] Gonçalves J. Z., “Free groups in subnormal subgroups and the residual nilpotence of the group of units of group rings”, Canad. Math. Bull., 27:3 (1984), 365–370 | DOI | MR | Zbl
[12] Gonçalves J. Z., Mandel A., “Are there free groups in division rings?”, Israel J. Math., 53:1 (1986), 69–80 | DOI | MR | Zbl
[13] Gonçalves J. Z., Passman D. S., “Free groups in normal subgroups of the multiplicative group of a division ring”, J. Algebra, 440 (2015), 128–144 | DOI | MR | Zbl
[14] Gonçalves J. Z., Shirvani M., “Algebraic elements as free factors in simple Artinian rings”, Contemp. Math., 499, Amer. Math. Soc., Providence, RI, 2009, 121–125 | DOI | MR | Zbl
[15] Hai B. X., Deo T. T., Bien M. H., “On subgroups of division rings of type 2”, Studia Sci. Math. Hungar., 49:4 (2012), 549–557 | MR | Zbl
[16] Hai B. X., Ngoc N. K., “A note on the existence of non-cyclic free subgroups in division rings”, Arch. Math. (Basel), 101 (2013), 437–443 | DOI | MR | Zbl
[17] Hai B. X., Bien M. H., Deo T. T., On the Gelfand–Kirillov dimension of weakly locally finite division rings, 29 Oct. 2015, arXiv: 1510.08711v1[math.RA]
[18] Hartley B., “Free groups in normal subgroups of unit groups and arithmetic groups”, Contemp. Math., 93, Amer. Math. Soc., Providence, RI, 1989, 173–177 | DOI | MR
[19] Hazrat R., Wadsworth A. R., “On maximal subgroups of the multiplicative group of a division algebra”, J. Algebra, 322:7 (2009), 2528–2543 | DOI | MR | Zbl
[20] Hazrat R., Mahdavi-Hezavehi M., Motiee M., “Multiplicative groups of division rings”, Math. Proc. R. Ir. Acad., 114A:1 (2014), 37–114 | DOI | MR | Zbl
[21] Lam T. Y., A first course in noncommutative rings, Grad. Texts. Math., 131, Springer-Verlag, New York, 1991 | DOI | MR | Zbl
[22] Lichtman A. I., “On subgroups of the multiplicative group of skew fields”, Proc. Amer. Math. Soc., 63:1 (1977), 15–16 | DOI | MR | Zbl
[23] Lichtman A. I., “Free subgroups of normal subgroups of the multiplicative group of skew fields”, Proc. Amer. Math. Soc., 71:2 (1978), 174–178 | DOI | MR | Zbl
[24] Lichtman A. I., “Free subgroups in linear groups over some skew fields”, J. Algebra, 105:1 (1987), 1–28 | DOI | MR | Zbl
[25] Mahdavi-Hezavehi M., Mahmudi M. G., Yasamin M. G. S., “Finitely generated subnormal subgroups of $\mathrm{GL}_n(D)$ are central”, J. Algebra, 225:2 (2000), 517–521 | DOI | MR
[26] Tits J., “Free subgroups in linear groups”, J. Algebra, 20 (1972), 250–270 | DOI | MR | Zbl
[27] Tomanov G. M., “Obobschennye gruppovye tozhdestva v lineinykh gruppakh”, Mat. sb., 123(165):1 (1984), 35–49 | MR | Zbl
[28] Reichstein Z., Vonessen N., “Free subgroups of division algebras”, Comm. Algebra, 23:6 (1995), 2181–2185 | DOI | MR | Zbl
[29] Rowen L. H., Polynomial identities in ring theory, Pure Appl. Math., 84, Acad. Press, New York, 1980 | MR | Zbl
[30] Shirvani M., Wehrfritz B. A. F., Skew linear groups, London Math. Soc. Lecture Note Ser., 118, Cambridge Univ. Press, Cambridge, 1986 | MR | Zbl