On unconditional exponential bases in weighted spaces on interval of real axis
Algebra i analiz, Tome 28 (2016) no. 5, pp. 195-219.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that if a weighted space $L_2(h)$ on the interval $(-1;1)$ admits an unconditional basis of exponentials, and the entire function that generates this basis satisfies a certain condition, then the space $L_2(h)$ is isomorphic (as a normed space) to the usual space $L_2$.
Keywords: Series of exponentials, unconditional basis, Hilbert space, entire functions.
@article{AA_2016_28_5_a4,
     author = {K. P. Isaev and R. S. Yulmukhametov and A. A. Yunusov},
     title = {On unconditional exponential bases in weighted spaces on interval of real axis},
     journal = {Algebra i analiz},
     pages = {195--219},
     publisher = {mathdoc},
     volume = {28},
     number = {5},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_5_a4/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
AU  - A. A. Yunusov
TI  - On unconditional exponential bases in weighted spaces on interval of real axis
JO  - Algebra i analiz
PY  - 2016
SP  - 195
EP  - 219
VL  - 28
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_5_a4/
LA  - ru
ID  - AA_2016_28_5_a4
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%A A. A. Yunusov
%T On unconditional exponential bases in weighted spaces on interval of real axis
%J Algebra i analiz
%D 2016
%P 195-219
%V 28
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_5_a4/
%G ru
%F AA_2016_28_5_a4
K. P. Isaev; R. S. Yulmukhametov; A. A. Yunusov. On unconditional exponential bases in weighted spaces on interval of real axis. Algebra i analiz, Tome 28 (2016) no. 5, pp. 195-219. http://geodesic.mathdoc.fr/item/AA_2016_28_5_a4/

[1] Bari N. K., “O bazisakh v gilbertovom prostranstve”, Dokl. AN SSSR, 54:5 (1946), 383–386

[2] Nikolskii N. K., Pavlov B. S., Khruschev S. V., Bezuslovnye bazisy iz eksponent i vosproizvodyaschikh yader. I, Preprint R-8-80, LOMI, 1980

[3] Hrus̆c̆ev S. V., Nikol'skiǐ N. K., Pavlov B. S., “Unconditional bases of exponentials and of reproductional kernels”, Complex Analysis and Spectral Theory, Lecture Notes in Math., 864, Springer, Berlin, 1981, 214–335 | DOI | MR

[4] Levin B. Ya., Lyubarskii Yu. I., “Interpolyatsiya tselymi funktsiyami spetsialnykh klassov i svyazannye s neyu razlozheniya v ryady eksponent”, Izv. AN SSSR. Ser. mat., 39:3 (1975), 657–702 | MR | Zbl

[5] Lyubarskii Yu. I., “Ryady eksponent v prostranstvakh Smirnova i interpolyatsiya tselymi funktsiyami spetsialnykh klassov”, Izv. AN SSSR. Ser. mat., 52:3 (1988), 559–580 | MR | Zbl

[6] Lutsenko V. I., Bezuslovnye bazisy iz eksponent v prostranstvakh Smirnova, Kand. diss., In-t mat. s VTs UNTs RAN, Ufa, 1992

[7] Isaev K. P., Yulmukhametov R. S., “Ob otsutstvii bezuslovnykh bazisov iz eksponent v prostranstvakh Bergmana na oblastyakh, ne yavlyayuschikhsya mnogougolnikami”, Izv. RAN. Ser. mat., 71:6 (2007), 69–90 | DOI | MR | Zbl

[8] Bashmakov R. A., Sistemy eksponent v vesovykh gilbertovkh prostranstvakh na $R$, Kand. diss., In-t mat. s VTs UNTs RAN, Ufa, 2006

[9] Bashmakov R. A., Makhota A. A., Trunov K. V., “Ob usloviyakh otsutstviya bezuslovnykh bazisov iz eksponent”, Ufim. mat. zh., 7:2 (2015), 19–34 | MR

[10] Aronszajn N., “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl

[11] Borichev A., Dhuez R., Kellay K., “Sampling and interpolation in large Bergman and Fock spaces”, J. Funct. Anal., 242:2 (2007), 563–606 | DOI | MR | Zbl

[12] Borichev A., Lyubarskii Yu., “Riesz bases of reproducing kernels in Fock type spaces”, J. Inst. Math. Jussieu, 9:3 (2010), 449–461 | DOI | MR | Zbl

[13] Seip K., “Density theorems for sampling and interpolation in the Bargmann–Fock space. I”, Reine Angew. Math., 429 (1992), 91–106 | MR | Zbl

[14] Seip K., Wallsten R., “Density theorems for sampling and interpolation in the Bargmann–Fock space. II”, Reine Angew. Math., 429 (1992), 107–113 | MR | Zbl

[15] Isaev K. P., Yulmukhametov R. S., “Bezuslovnye bazisy iz vosproizvodyaschikh yader v gilbertovykh prostranstvakh tselykh funktsii”, Ufim. mat. zh., 5:3 (2013), 67–77 | MR

[16] Putintseva A. A., “Bazisy Rissa v vesovykh prostranstvakh”, Ufim. mat. zh., 3:1 (2011), 47–52 | MR | Zbl

[17] Lutsenko V. I., Yulmukhametov R. S., “Obobschenie teoremy Peli–Vinera na vesovye prostranstva”, Mat. zametki, 48:5 (1990), 80–87 | MR | Zbl

[18] Bashmakov R. A., Putintseva A. A., Yulmukhametov R. S., “Tselye funktsii tipa sinusa i ikh primenenie”, Algebra i analiz, 22:5 (2010), 49–68 | MR | Zbl

[19] Napalkov V. V., Bashmakov R. A., Yulmukhametov R. S., “Asimptoticheskoe povedenie integralov Laplasa i geometricheskie kharakteristiki vypuklykh funktsii”, Dokl. RAN, 413:1 (2007), 20–22 | Zbl

[20] Bashmakov R. A., Isaev K. P., Yulmukhametov R. S., “O geometricheskikh kharakteristikakh vypuklykh funktsii i integralax Laplasa”, Ufim. mat. zh., 2:1 (2010), 3–16 | Zbl

[21] Yulmukhametov R. S., “Asimptoticheskaya approksimatsiya subgarmonicheskikh funktsii”, Sib. mat. zh., 26:4 (1985), 159–175 | MR | Zbl

[22] Isaev K. P., “Bazisy Rissa iz eksponent v prostranstvakh Bergmana na vypuklykh mnogougolnikakh”, Ufim. mat. zh., 2:1 (2010), 71–86 | Zbl

[23] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980 | MR