Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_4_a3, author = {V. G. Zhuravlev}, title = {Symmetrization of bounded remainder sets}, journal = {Algebra i analiz}, pages = {80--101}, publisher = {mathdoc}, volume = {28}, number = {4}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_4_a3/} }
V. G. Zhuravlev. Symmetrization of bounded remainder sets. Algebra i analiz, Tome 28 (2016) no. 4, pp. 80-101. http://geodesic.mathdoc.fr/item/AA_2016_28_4_a3/
[1] Altman E., Gaujal B., Hordijk A., “Balanced sequences and optimal routing”, J. ACM, 47:4 (2000), 752–775 | DOI | MR | Zbl
[2] Baladi V., Rockmore D., Tongring N., Tresser C., “Renormalization on the $n$-dimensional torus”, Nonlinearity, 5:2 (1992), 1111–1136 | DOI | MR | Zbl
[3] Ferenczi S., “Bounded remaider sets”, Acta Arith., 61:4 (1992), 319–326 | MR | Zbl
[4] Fogg N. P., Substitutions in dynamics, arithmetics and combinatorics, Lecture Notes in Math., 1794, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[5] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod. Eins”, Abh. Math. Sem. Univ. Hamburg, 1:1 (1922), 54–76 | DOI | MR
[6] Heinis A., “Languages under substitutions and balanced words”, J. Théor. Nombres Bordeaux, 16:1 (2004), 151–172 | DOI | MR | Zbl
[7] Knuth D., “Efficient balanced codes”, IEEE Trans. Inform. Theory, 32:1 (1986), 51–53 | DOI | MR | Zbl
[8] Liardet P., “Regularities of distribution”, Compositio Math., 61:3 (1987), 267–293 | MR | Zbl
[9] Morse M., Hedlund G. A., “Symbolic dynamics. II. Sturmian trajectories”, Amer J. Math., 62 (1940), 1–42 | DOI | MR | Zbl
[10] Rauzy G., “Nombres algébriques et substitutions”, Bull. Soc. Math. France, 110:2 (1982), 147–178 | MR | Zbl
[11] Rauzy G., “Ensembles à restes bornés”, Sem. Number Theory, 1983–1984 (Talence, 1983/1984), Univ. Bordeaux I, Talence, 1984, Exp. No. 24 | MR | Zbl
[12] Shutov A. V., Maleev A. V., Zhuravlev V. G., “Complex quasiperiodic self-similar tilings: their parameterization, boundaries, complexity, growth and symmetry”, Acta Crystallogr. A, 66:3 (2010), 427–437 | DOI | MR
[13] Szüsz R., “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 5 (1954), 35–39 | DOI | MR | Zbl
[14] Vuillon L., “Balanced words”, Bull. Belg. Math. Soc. Simon Stevin, 10 (2003), 787–805 | MR
[15] Weyl H., “Über die Gleichverteilung von Zahlen $\mathrm{mod}$ Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl
[16] Voronoi G. F., Sobranie sochinenii, v. 2, Izd-vo AN Ukr. SSR, Kiev, 1952 | MR
[17] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl
[18] Zhuravlev V. G., “Odnomernye razbieniya Fibonachchi”, Izv. RAN. Ser. mat., 71:2 (2007), 89–122 | DOI | MR | Zbl
[19] Zhuravlev V. G., “Odnomernye kvazireshetki Fibonachchi i ikh prilozheniya k diofantovym uravneniyam i algoritmu Evklida”, Algebra i analiz, 19:3 (2007), 151–182 | MR | Zbl
[20] Zhuravlev V. G., “Uravnenie Pellya nad $\circ$-koltsom Fibonachchi”, Zap. nauch. semin. POMI, 350, 2007, 139–159 | MR
[21] Zhuravlev V. G., “Giperboly nad dvumernymi kvazireshetkami Fibonachchi”, Fundam. i prikl. mat., 16:6 (2010), 45–62 | MR
[22] Zhuravlev V. G., “Mnogomernaya teorema Gekke o raspredelenii drobnykh dolei”, Algebra i analiz, 24:1 (2012), 95–130 | MR | Zbl
[23] Zhuravlev V. G., “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145 | MR
[24] Zhuravlev V. G., “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhd. A. A. Karatsuby, v. 1, Sovrem. probl. mat., 16, MIAN, M., 2012, 82–102 | DOI | Zbl
[25] Zhuravlev V. G., “Moduli toricheskikh razbienii na mnozhestva ogranichennogo ostatka i sbalansirovannye slova”, Algebra i analiz, 24:4 (2012), 97–136 | MR | Zbl
[26] Zhuravlev V. G., “Mnozhestva ogranichennogo ostatka otnositelno perekladyvanii tora”, Algebra i analiz, 27:2 (2015), 96–131 | MR
[27] Zhuravlev V. G., “Mnogotsvetnye dinamicheskie razbieniya torov na mnozhestva ogranichennogo ostatka”, Izv. RAN. Ser. mat., 79:5 (2015), 65–102 | DOI | MR
[28] Pavlov A. I., “Meromorfnoe prodolzhenie ryadov Dirikhle, svyazannoe s raspredeleniem chisel po modulyu 1”, Tr. Mat. in-ta RAN, 218, 1997, 343–353 | MR | Zbl
[29] Rid K., Gilbert, Nauka, M., 1977 | MR
[30] Fedorov E. S., Nachala ucheniya o figurakh, Izd-vo AN SSSR, M., 1953 | MR