Injectivity theorem for homotopy invariant presheaves with Witt-transfers
Algebra i analiz, Tome 28 (2016) no. 2, pp. 227-237.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_2_a9,
     author = {K. Chepurkin},
     title = {Injectivity theorem for homotopy invariant presheaves with {Witt-transfers}},
     journal = {Algebra i analiz},
     pages = {227--237},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a9/}
}
TY  - JOUR
AU  - K. Chepurkin
TI  - Injectivity theorem for homotopy invariant presheaves with Witt-transfers
JO  - Algebra i analiz
PY  - 2016
SP  - 227
EP  - 237
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_2_a9/
LA  - ru
ID  - AA_2016_28_2_a9
ER  - 
%0 Journal Article
%A K. Chepurkin
%T Injectivity theorem for homotopy invariant presheaves with Witt-transfers
%J Algebra i analiz
%D 2016
%P 227-237
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_2_a9/
%G ru
%F AA_2016_28_2_a9
K. Chepurkin. Injectivity theorem for homotopy invariant presheaves with Witt-transfers. Algebra i analiz, Tome 28 (2016) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a9/

[1] Witt E., “Theorie der quadratischen Formen in beliebigen Körpern”, J. Reine Angew. Math., 176 (1936), 31–44 | MR | Zbl

[2] Knebusch M., “Symmetric bilinear forms over algebraic varieties”, Conf. on Quadratic Forms (Kingston, 1976), Queen's Papers Pure and Appl. Math., 46, Queen's Univ., Kingston, Ont., 1977, 103–283 | MR | Zbl

[3] Balmer P., “Triangular Witt groups. Pt. I. The 12-term localization exact sequence”, K-Theory, 19:4 (2000), 311–363 | DOI | MR | Zbl

[4] Balmer P., “Triangular Witt groups. Pt. II. From usual to derived”, Math. Z., 236:2 (2001), 351–382 | DOI | MR | Zbl

[5] Gille S., Nenashev A., “Pairings in triangular Witt theory”, J. Algebra, 261:2 (2003), 292–309 | DOI | MR | Zbl

[6] Nenashev A., “Projective push-forwards in the Witt theory of algebraic varieties”, Adv. Math., 220:6 (2009), 1923–1944 | DOI | MR | Zbl

[7] Ojanguren M., “Quadratic forms over local rings”, J. Indian Math. Soc. (N.S.), 44:1–4 (1980), 109–116 | MR | Zbl

[8] Altman A., Kleiman S., Introduction to Grothendick duality theory, Lecture Notes in Math., 146, Springer-Verlag, Berlin, 1970 | MR

[9] Ojanguren M., Panin I., “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | MR | Zbl

[10] Eisenbud D., Commutatative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | DOI | MR