Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2016_28_2_a9, author = {K. Chepurkin}, title = {Injectivity theorem for homotopy invariant presheaves with {Witt-transfers}}, journal = {Algebra i analiz}, pages = {227--237}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a9/} }
K. Chepurkin. Injectivity theorem for homotopy invariant presheaves with Witt-transfers. Algebra i analiz, Tome 28 (2016) no. 2, pp. 227-237. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a9/
[1] Witt E., “Theorie der quadratischen Formen in beliebigen Körpern”, J. Reine Angew. Math., 176 (1936), 31–44 | MR | Zbl
[2] Knebusch M., “Symmetric bilinear forms over algebraic varieties”, Conf. on Quadratic Forms (Kingston, 1976), Queen's Papers Pure and Appl. Math., 46, Queen's Univ., Kingston, Ont., 1977, 103–283 | MR | Zbl
[3] Balmer P., “Triangular Witt groups. Pt. I. The 12-term localization exact sequence”, K-Theory, 19:4 (2000), 311–363 | DOI | MR | Zbl
[4] Balmer P., “Triangular Witt groups. Pt. II. From usual to derived”, Math. Z., 236:2 (2001), 351–382 | DOI | MR | Zbl
[5] Gille S., Nenashev A., “Pairings in triangular Witt theory”, J. Algebra, 261:2 (2003), 292–309 | DOI | MR | Zbl
[6] Nenashev A., “Projective push-forwards in the Witt theory of algebraic varieties”, Adv. Math., 220:6 (2009), 1923–1944 | DOI | MR | Zbl
[7] Ojanguren M., “Quadratic forms over local rings”, J. Indian Math. Soc. (N.S.), 44:1–4 (1980), 109–116 | MR | Zbl
[8] Altman A., Kleiman S., Introduction to Grothendick duality theory, Lecture Notes in Math., 146, Springer-Verlag, Berlin, 1970 | MR
[9] Ojanguren M., Panin I., “A purity theorem for the Witt group”, Ann. Sci. École Norm. Sup. (4), 32:1 (1999), 71–86 | MR | Zbl
[10] Eisenbud D., Commutatative algebra. With a view toward algebraic geometry, Grad. Texts in Math., 150, Springer-Verlag, New York, 1995 | DOI | MR