Subsequences of zeros for classes of entire functions of exponential type, allocated by restrictions on their growth
Algebra i analiz, Tome 28 (2016) no. 2, pp. 1-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_2_a0,
     author = {T. Yu. Bayguskarov and G. R. Talipova and B. N. Khabibullin},
     title = {Subsequences of zeros for classes of entire functions of exponential type, allocated by restrictions on their growth},
     journal = {Algebra i analiz},
     pages = {1--33},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_2_a0/}
}
TY  - JOUR
AU  - T. Yu. Bayguskarov
AU  - G. R. Talipova
AU  - B. N. Khabibullin
TI  - Subsequences of zeros for classes of entire functions of exponential type, allocated by restrictions on their growth
JO  - Algebra i analiz
PY  - 2016
SP  - 1
EP  - 33
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_2_a0/
LA  - ru
ID  - AA_2016_28_2_a0
ER  - 
%0 Journal Article
%A T. Yu. Bayguskarov
%A G. R. Talipova
%A B. N. Khabibullin
%T Subsequences of zeros for classes of entire functions of exponential type, allocated by restrictions on their growth
%J Algebra i analiz
%D 2016
%P 1-33
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_2_a0/
%G ru
%F AA_2016_28_2_a0
T. Yu. Bayguskarov; G. R. Talipova; B. N. Khabibullin. Subsequences of zeros for classes of entire functions of exponential type, allocated by restrictions on their growth. Algebra i analiz, Tome 28 (2016) no. 2, pp. 1-33. http://geodesic.mathdoc.fr/item/AA_2016_28_2_a0/

[1] Khabibullin B. N., Talipova G. R., Khabibullin F. B., “Podposledovatelnosti nulei dlya prostranstv Bernshteina i polnota sistem eksponent v prostranstvakh funktsii na intervale”, Algebra i analiz, 26:2 (2014), 185–215 | MR

[2] Favorov S. Yu., “Mnozhestva nulei tselykh funktsii eksponentsialnogo tipa s dopolnitelnymi usloviyami na veschestvennoi pryamoi”, Algebra i analiz, 20:1 (2008), 138–145 | MR | Zbl

[3] Khabibullin B. N., Monografiya-obzor, RITs BashGU, Ufa, 2012 http://www.researchgate.net/publication/271841461

[4] Matsaev V., Sodin M., “Distribution of Hilbert transforms of measures”, Geom. Funct. Anal., 10:1 (2000), 160–184 | DOI | MR | Zbl

[5] Function Algebras, Proc. Intern. Sympos. Function Algebras, Scott, Foresman and Co., Chicago, 1966 | Zbl

[6] Gamelin T. W., Uniform algebras and Jensen measures, London Math. Soc. Lecture Note Ser., 32, Cambridge Univ. Press, Cambridge, 1978 | MR | Zbl

[7] Khabibullin B. N., “Mnozhestva edinstvennosti v prostranstvakh tselykh funktsii odnoi peremennoi”, Izv. AN SSSR. Cer. mat., 55:5 (1991), 1101–1123 | MR | Zbl

[8] Koosis P., Leçons sur le théorème de Beurling et Malliavin, Univ. de Monttréal, Les Publ. CRM, Montréal, 1996 | MR

[9] Ransford T. J., “Jensen measures”, Approximation, Complex Analysis, and Potential Theory (Montréal, QC, 2000), NATO Sci. Ser. II Math. Phys. Chem., 37, Kluwer Acad. Publ., Dordrecht, 2001, 221–237 | MR | Zbl

[10] Khabibullin B. N., “Dvoistvennoe predstavlenie superlineinykh funktsionalov i ego primeneniya v teorii funktsii. II”, Izv. AN SSSR. Cer. mat., 65:5 (2001), 167–190 | DOI | MR | Zbl

[11] Khabibullin B. N., “Mery Iensena na otkrytykh mnozhestvakh”, Vestn. Bashkir. un-ta, 1999, no. 2, 3–6

[12] Khabibullin B. N., “Kriterii (sub-)garmonichnosti i prodolzhenie (sub-) garmonicheskikh funktsii”, Sib. mat. zh., 44:4 (2003), 905-925 | MR | Zbl

[13] Khabibullin B. N., Khabibullin F. B., Cherednikova L. Yu., “Podposledovatelnosti nulei dlya klassov golomorfnykh funktsii, ikh ustoichivost i entropiya lineinoi svyaznosti. I”, Algebra i analiz, 20:1 (2008), 146–189 | MR | Zbl

[14] Ransford T. J., Potential theory in the complex plane, London Math. Soc. Student Texts, 28, Cambridge Univ. Press, Cambridge, 1995 | MR | Zbl

[15] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR

[16] Brelo M., Osnovy klassicheskoi teorii potentsiala, Mir, M., 1964 | MR

[17] Kheiman U., Kennedi P., Subgarmonicheskie funktsii, Mir, M., 1980

[18] Koosis P., The logarithmic integral, v. II, Cambridge Stud. Adv. Math., 21, Cambridge Univ. Press, Cambridge, 1992 | MR | Zbl

[19] Talipova G. R. , Khabibullin B. N., “Posledovatelnosti edinstvennosti dlya klassov tselykh funktsii eksponentsialnogo tipa, ogranichennykh na veschestvennoi osi”, Vestn. Bashkir. un-ta, 20:1 (2015), 5–10

[20] Makarov B. M., Podkorytov A. N., Lektsii po veschestvennomu analizu, BKhV-Peterburg, SPb., 2011

[21] Matsaev V., Ostrovskii I., Sodin M., “Variations on the theme of Marcinkiewicz' inequality”, J. Anal. Math., 86 (2002), 289–317 | DOI | MR | Zbl

[22] Abanin A. V., Ultradifferentsiruemye funktsii i ultraraspredeleniya, Nauka, M., 2007