Homogenization of high order elliptic operators with periodic coefficients
Algebra i analiz, Tome 28 (2016) no. 1, pp. 89-149.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2016_28_1_a3,
     author = {A. A. Kukushkin and T. A. Suslina},
     title = {Homogenization of high order elliptic operators with periodic coefficients},
     journal = {Algebra i analiz},
     pages = {89--149},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2016_28_1_a3/}
}
TY  - JOUR
AU  - A. A. Kukushkin
AU  - T. A. Suslina
TI  - Homogenization of high order elliptic operators with periodic coefficients
JO  - Algebra i analiz
PY  - 2016
SP  - 89
EP  - 149
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2016_28_1_a3/
LA  - ru
ID  - AA_2016_28_1_a3
ER  - 
%0 Journal Article
%A A. A. Kukushkin
%A T. A. Suslina
%T Homogenization of high order elliptic operators with periodic coefficients
%J Algebra i analiz
%D 2016
%P 89-149
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2016_28_1_a3/
%G ru
%F AA_2016_28_1_a3
A. A. Kukushkin; T. A. Suslina. Homogenization of high order elliptic operators with periodic coefficients. Algebra i analiz, Tome 28 (2016) no. 1, pp. 89-149. http://geodesic.mathdoc.fr/item/AA_2016_28_1_a3/

[1] Bakhvalov N. S., Panasenko G. P., Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR

[2] Bensoussan A., Lions J.-L., Papanicolaou G., Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publ. Co., Amsterdam–New York, 1978 | MR | Zbl

[3] Birman M. Sh., Suslina T. A., “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[4] Birman M. Sh., Suslina T. A., “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo operatornogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR | Zbl

[5] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR | Zbl

[6] Birman M. Sh., Suslina T. A., “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb R^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR | Zbl

[7] Veniaminov N. A., “Usrednenie periodicheskikh differentsialnykh operatorov vysokogo poryadka”, Algebra i analiz, 22:5 (2010), 69–103 | MR | Zbl

[8] Zhikov V. V., “Ob operatornykh otsenkakh v teorii usredneniya”, Dokl. RAN, 403:3 (2005), 305–308 | MR | Zbl

[9] Zhikov V. V., Kozlov S. M., Oleinik O. A., Usrednenie differentsialnykh operatorov, Nauka, M., 1993 | MR

[10] Zhikov V. V., Pastukhova S. E., “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[11] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR

[12] Mazya V. G., Shaposhnikova T. O., Multiplikatory v prostranstvakh differentsiruemykh funktsii, Izd-vo LGU, L., 1986 | MR

[13] Marcinkiewicz J., “Sur les multiplicateurs des series de Fourier”, Studia Math., 8 (1939), 78–91 | Zbl

[14] Pastukhova S. E., “Operatornye otsenki usredneniya dlya ellipticheskikh uravnenii chetvertogo poryadka”, Algebra i analiz (to appear)

[15] Pastukhova S. E., “Estimates in homogenization of higher-order elliptic operators”, Appl. Anal., submitted | MR

[16] Suslina T. A., “Usrednenie ellipticheskikh operatorov s periodicheskimi koeffitsientami v zavisimosti ot spektralnogo parametra”, Algebra i analiz, 27:4 (2015), 87–166