A nullstellensatz for triangulated categories
Algebra i analiz, Tome 27 (2015) no. 6, pp. 41-56.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_6_a3,
     author = {M. V. Bondarko and V. A. Sosnilo},
     title = {A nullstellensatz for triangulated categories},
     journal = {Algebra i analiz},
     pages = {41--56},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a3/}
}
TY  - JOUR
AU  - M. V. Bondarko
AU  - V. A. Sosnilo
TI  - A nullstellensatz for triangulated categories
JO  - Algebra i analiz
PY  - 2015
SP  - 41
EP  - 56
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_6_a3/
LA  - ru
ID  - AA_2015_27_6_a3
ER  - 
%0 Journal Article
%A M. V. Bondarko
%A V. A. Sosnilo
%T A nullstellensatz for triangulated categories
%J Algebra i analiz
%D 2015
%P 41-56
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_6_a3/
%G ru
%F AA_2015_27_6_a3
M. V. Bondarko; V. A. Sosnilo. A nullstellensatz for triangulated categories. Algebra i analiz, Tome 27 (2015) no. 6, pp. 41-56. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a3/

[1] Beligiannis A., Reiten I., Homological and homotopical aspects of torsion theories, Mem. Amer. Math. Soc., 188, no. 883, 2007 http://users.uoi.gr/abeligia/torsion.pdf | MR

[2] Bondarko M. V., “$\mathbb Z[\frac1p]$-motivic resolution of singularities”, Compos. Math., 147:5 (2011), 1434–1446 | DOI | MR | Zbl

[3] Bondarko M. V., Gersten weight structures for motivic homotopy categories; direct summands of cohomology of function fields and coniveau spectral sequences, Preprint, arXiv: 1312.7493

[4] Cisinski D., Déglise F., “Étale motives”, Comp. Math., 2015, published online ; arXiv: 1305.5361 | DOI

[5] Kelly S., Triangulated categories of motives in positive characteristic, Dissertation 2012, arXiv: 1305.5349

[6] Krause H., “Localization theory for triangulated categories”, Triangulated categories, London Math. Soc. Lecture Note Ser., 375, Cambridge Univ. Press, Cambridge, 2010, 161–235 | MR | Zbl

[7] May J., “The additivity of traces in triangulated categories”, Adv. Math., 163:1 (2001), 34–73 | DOI | MR | Zbl

[8] Pauksztello D., “A note on compactly generated co-t-structures”, Comm. Algebra, 40:2 (2012), 386–394 | DOI | MR | Zbl

[9] Pospisil D, Stovicek J., On compactly generated torsion pairs and the classification of co-t-structures for commutative noetherian rings, Preprint, arXiv: 1212.3122 | MR

[10] Tarrio L. A., Lopez A. J., Salorio M. J., “Construction of $t$-structures and equivalences of derived categories”, Trans. Amer. Math. Soc., 355:6 (2003), 2523–2543 | DOI | MR | Zbl