Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_6_a2, author = {M. V. Bondarko and M. A. Ivanov}, title = {On {Chow} weight structures for $cdh$-motives with integral coefficients}, journal = {Algebra i analiz}, pages = {14--40}, publisher = {mathdoc}, volume = {27}, number = {6}, year = {2015}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a2/} }
M. V. Bondarko; M. A. Ivanov. On Chow weight structures for $cdh$-motives with integral coefficients. Algebra i analiz, Tome 27 (2015) no. 6, pp. 14-40. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a2/
[1] Beilinson A., Bernstein J., Deligne P., “Faisceaux pervers”, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR
[2] Beilinson A. A., “Vysshie regulyatory i znacheniya $L$-funktsii”, Itogi nauki i tekhn. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 181–238 | MR | Zbl
[3] Bondarko M., “Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. $K$-theory, 6:3 (2010) ; arXiv: 0704.4003 | MR | Zbl
[4] Bondarko M. V., “$\mathbb Z[\frac1p]$-motivic resolution of singularities”, Compos. Math., 147:5 (2011), 1434–1446 | DOI | MR | Zbl
[5] Bondarko M. V., “Weight structures and “weights” on the hearts of $t$-structures”, Homology Appl., 14:1 (2012), 239–261 ; arXiv: 1011.3507 | DOI | MR | Zbl
[6] Bondarko M. V., On weights for relative motives with integral coefficients, Preprint, 2013, arXiv: 1304.2335
[7] Bondarko M. V., “Weights for relative motives: relation with mixed complexes of sheaves”, Int. Math. Res. Not. IMRN, 17 (2014), 4715–4767 ; arXiv: 1007.4543 | MR | Zbl
[8] Bondarko M. V., On perverse homotopy $t$-structures, coniveau spectral sequences, cycle modules, and relative Gersten weight structures, Preprint, 2014, arXiv: 1409.0525
[9] Bondarko M. V., “Mixed motivic sheaves (and weights for them) exist if “ordinary” mixed motives do”, Compos. Math., 151:5 (2015), 917–956 ; arXiv: 1105.0420 | DOI | MR | Zbl
[10] Cisinski D.-C., Déglise F., Triangulated categories of mixed motives, Preprint, 2009; arXiv: 0912.2110v3
[11] Cisinski D., Déglise F., “Étale motives”, Comp. Math., 2015, published online ; arXiv: 1305.5361 | DOI
[12] Cisinski D., Déglise F., Integral mixed motives in equal characteristic, Preprint, 2014, arXiv: 1410.6359
[13] Déglise F., On the homotopy heart of mixed motives, Preprint, , 2014 http://perso.ens-lyon.fr/frederic.deglise/docs/2014/modhtpb.pdf
[14] Gillet H., Soulé C., “Descent, motives and $K$-theory”, J. Reine Angew. Math., 478 (1996), 127–176 | MR | Zbl
[15] Hébert D., “Structure de poids a la Bondarko sur les motifs de Beilinson”, Compos. Math., 147:5 (2011), 1447–1462 | DOI | MR | Zbl
[16] Huber A., “Mixed perverse sheaves for schemes over number fields”, Compos. Math., 108:1 (1997), 107–121 | DOI | MR | Zbl
[17] Jin F., Borel–Moore motivic homology and weight structure on mixed motives, Preprint, 2015, arXiv: 1502.03956
[18] Levine M., Mixed motives, Math. Surveys Monogr., 57, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl
[19] Neeman A., Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001 | MR | Zbl
[20] Scholl A., “Integral elements in $K$-theory and products of modular curves”, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C, 548, Kluwer Acad. Publ., Dordrecht, 2000, 467–489 | MR | Zbl
[21] Sosnilo V. A., Weight structures in localizations (revisited) and the weight lifting property, Preprint, 2015, arXiv: 1510.03403
[22] Wildeshaus J., “Motivic intersection complex”, Regulators, v. III, Contemp. Math., 571, Amer. Math. Soc., Providence, RI, 2012, 255–276 | DOI | MR | Zbl