On Chow weight structures for $cdh$-motives with integral coefficients
Algebra i analiz, Tome 27 (2015) no. 6, pp. 14-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

Our main goal in this paper is to define a certain Chow weight structure $w_\mathrm{Chow}$ on the category $\mathcal{DM}_c(S)$ of (constructible) $cdh$-motives over an equicharacteristic scheme $S$. In contrast to the previous papers of D. Hébert and the first author on weights for relative motives (with rational coefficients), we can achieve our goal for motives with integral coefficients (if $\operatorname{char}S=0$; if $\operatorname{char}S=p>0$, then we consider motives with $\mathbb Z[\frac1p]$-coefficients). We prove that the properties of the Chow weight structures that were previously established for $\mathbb Q$-linear motives can be carried over to this “integral” context (and we generalize some of them using certain new methods). In this paper we mostly study the version of $w_\mathrm{Chow}$ defined via “gluing from strata”; this enables us to define Chow weight structures for a wide class of base schemes. As a consequence, we certainly obtain certain (Chow)-weight spectral sequences and filtrations on any (co)homology of motives.
Keywords: Voevodsky motives, triangulated categories, weight structures, Deligne's weights, $cdh$-topology.
@article{AA_2015_27_6_a2,
     author = {M. V. Bondarko and M. A. Ivanov},
     title = {On {Chow} weight structures for $cdh$-motives with integral coefficients},
     journal = {Algebra i analiz},
     pages = {14--40},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a2/}
}
TY  - JOUR
AU  - M. V. Bondarko
AU  - M. A. Ivanov
TI  - On Chow weight structures for $cdh$-motives with integral coefficients
JO  - Algebra i analiz
PY  - 2015
SP  - 14
EP  - 40
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_6_a2/
LA  - en
ID  - AA_2015_27_6_a2
ER  - 
%0 Journal Article
%A M. V. Bondarko
%A M. A. Ivanov
%T On Chow weight structures for $cdh$-motives with integral coefficients
%J Algebra i analiz
%D 2015
%P 14-40
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_6_a2/
%G en
%F AA_2015_27_6_a2
M. V. Bondarko; M. A. Ivanov. On Chow weight structures for $cdh$-motives with integral coefficients. Algebra i analiz, Tome 27 (2015) no. 6, pp. 14-40. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a2/

[1] Beilinson A., Bernstein J., Deligne P., “Faisceaux pervers”, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR

[2] Beilinson A. A., “Vysshie regulyatory i znacheniya $L$-funktsii”, Itogi nauki i tekhn. Sovrem. probl. mat. Nov. dostizh., 24, VINITI, M., 1984, 181–238 | MR | Zbl

[3] Bondarko M., “Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. $K$-theory, 6:3 (2010) ; arXiv: 0704.4003 | MR | Zbl

[4] Bondarko M. V., “$\mathbb Z[\frac1p]$-motivic resolution of singularities”, Compos. Math., 147:5 (2011), 1434–1446 | DOI | MR | Zbl

[5] Bondarko M. V., “Weight structures and “weights” on the hearts of $t$-structures”, Homology Appl., 14:1 (2012), 239–261 ; arXiv: 1011.3507 | DOI | MR | Zbl

[6] Bondarko M. V., On weights for relative motives with integral coefficients, Preprint, 2013, arXiv: 1304.2335

[7] Bondarko M. V., “Weights for relative motives: relation with mixed complexes of sheaves”, Int. Math. Res. Not. IMRN, 17 (2014), 4715–4767 ; arXiv: 1007.4543 | MR | Zbl

[8] Bondarko M. V., On perverse homotopy $t$-structures, coniveau spectral sequences, cycle modules, and relative Gersten weight structures, Preprint, 2014, arXiv: 1409.0525

[9] Bondarko M. V., “Mixed motivic sheaves (and weights for them) exist if “ordinary” mixed motives do”, Compos. Math., 151:5 (2015), 917–956 ; arXiv: 1105.0420 | DOI | MR | Zbl

[10] Cisinski D.-C., Déglise F., Triangulated categories of mixed motives, Preprint, 2009; arXiv: 0912.2110v3

[11] Cisinski D., Déglise F., “Étale motives”, Comp. Math., 2015, published online ; arXiv: 1305.5361 | DOI

[12] Cisinski D., Déglise F., Integral mixed motives in equal characteristic, Preprint, 2014, arXiv: 1410.6359

[13] Déglise F., On the homotopy heart of mixed motives, Preprint, , 2014 http://perso.ens-lyon.fr/frederic.deglise/docs/2014/modhtpb.pdf

[14] Gillet H., Soulé C., “Descent, motives and $K$-theory”, J. Reine Angew. Math., 478 (1996), 127–176 | MR | Zbl

[15] Hébert D., “Structure de poids a la Bondarko sur les motifs de Beilinson”, Compos. Math., 147:5 (2011), 1447–1462 | DOI | MR | Zbl

[16] Huber A., “Mixed perverse sheaves for schemes over number fields”, Compos. Math., 108:1 (1997), 107–121 | DOI | MR | Zbl

[17] Jin F., Borel–Moore motivic homology and weight structure on mixed motives, Preprint, 2015, arXiv: 1502.03956

[18] Levine M., Mixed motives, Math. Surveys Monogr., 57, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR | Zbl

[19] Neeman A., Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001 | MR | Zbl

[20] Scholl A., “Integral elements in $K$-theory and products of modular curves”, The arithmetic and geometry of algebraic cycles (Banff, AB, 1998), NATO Sci. Ser. C, 548, Kluwer Acad. Publ., Dordrecht, 2000, 467–489 | MR | Zbl

[21] Sosnilo V. A., Weight structures in localizations (revisited) and the weight lifting property, Preprint, 2015, arXiv: 1510.03403

[22] Wildeshaus J., “Motivic intersection complex”, Regulators, v. III, Contemp. Math., 571, Amer. Math. Soc., Providence, RI, 2012, 255–276 | DOI | MR | Zbl