Supercharacter theory for groups of invertible elements of reduced algebras
Algebra i analiz, Tome 27 (2015) no. 6, pp. 242-259.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_6_a12,
     author = {A. N. Panov},
     title = {Supercharacter theory for groups of invertible elements of reduced algebras},
     journal = {Algebra i analiz},
     pages = {242--259},
     publisher = {mathdoc},
     volume = {27},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_6_a12/}
}
TY  - JOUR
AU  - A. N. Panov
TI  - Supercharacter theory for groups of invertible elements of reduced algebras
JO  - Algebra i analiz
PY  - 2015
SP  - 242
EP  - 259
VL  - 27
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_6_a12/
LA  - ru
ID  - AA_2015_27_6_a12
ER  - 
%0 Journal Article
%A A. N. Panov
%T Supercharacter theory for groups of invertible elements of reduced algebras
%J Algebra i analiz
%D 2015
%P 242-259
%V 27
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_6_a12/
%G ru
%F AA_2015_27_6_a12
A. N. Panov. Supercharacter theory for groups of invertible elements of reduced algebras. Algebra i analiz, Tome 27 (2015) no. 6, pp. 242-259. http://geodesic.mathdoc.fr/item/AA_2015_27_6_a12/

[1] André C. A. M., “Basic sums of coadjoint orbits of the unitriangular group”, J. Algebra, 176:3 (1995), 959–1000 | DOI | MR | Zbl

[2] André C. A. M., “Basic character table of the unitriangular group”, J. Algebra, 241:1 (2001), 437–471 | DOI | MR | Zbl

[3] André C. A. M., “Hecke algebras for the basic characters of the unitriangular group”, Proc. Amer. Math. Soc., 132:4 (2004), 987–996 | DOI | MR | Zbl

[4] Diaconis P., Isaacs I. M., “Supercharacters and superclasses for algebra groups”, Trans. Amer. Math. Soc., 360:5 (2008), 2359–2392 | DOI | MR | Zbl

[5] Ning Yan, Representation theory of finite unipotent linear groups, Dissertation, 2001, arXiv: 1004.2674 | MR

[6] Aguiar M. etc., “Supercharacters, symmetric functions in noncommuting variables, and related Hopf algebras”, Adv. Math., 229:4 (2012), 2310–2337 | DOI | MR | Zbl

[7] Hendrickson A. O. F., “Supercharacter theory costructions corresponding to Schur ring products”, Comm. Algebra, 40:12 (2012), 4420–4438 | DOI | MR | Zbl

[8] Andrews S., Supercharacter theory constructed by the method of little groups, 2014, arXiv: 1405.5479

[9] Lang A., Supercharacter theories and semidirect products, 2014, arXiv: 1405.1764

[10] Pirs P., Assotsiativnye algebry, Mir, M., 1986 | MR

[11] Drozd Yu. N., Kirichenko V. V., Konechnomernye algebry, Vischa shkola, Kiev, 1980 | MR

[12] Kertis Ch., Rainer I., Teoriya predstavlenii konechnykh grupp i assotsiativnykh algebr, Nauka, M., 1969 | MR

[13] Serre J.-P., Linear representations of finite groups, Grad. Texts in Math., 42, Springer-Verlag, New York, 1977 | DOI | MR | Zbl