Remarks on $\mathrm A_p$-regular lattices of measurable functions
Algebra i analiz, Tome 27 (2015) no. 5, pp. 153-169.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_5_a5,
     author = {D. V. Rutsky},
     title = {Remarks on $\mathrm A_p$-regular lattices of measurable functions},
     journal = {Algebra i analiz},
     pages = {153--169},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_5_a5/}
}
TY  - JOUR
AU  - D. V. Rutsky
TI  - Remarks on $\mathrm A_p$-regular lattices of measurable functions
JO  - Algebra i analiz
PY  - 2015
SP  - 153
EP  - 169
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_5_a5/
LA  - ru
ID  - AA_2015_27_5_a5
ER  - 
%0 Journal Article
%A D. V. Rutsky
%T Remarks on $\mathrm A_p$-regular lattices of measurable functions
%J Algebra i analiz
%D 2015
%P 153-169
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_5_a5/
%G ru
%F AA_2015_27_5_a5
D. V. Rutsky. Remarks on $\mathrm A_p$-regular lattices of measurable functions. Algebra i analiz, Tome 27 (2015) no. 5, pp. 153-169. http://geodesic.mathdoc.fr/item/AA_2015_27_5_a5/

[1] Kalton N. J., “Complex interpolation of Hardy-type subspaces”, Math. Nachr., 171 (1995), 227–258 | DOI | MR | Zbl

[2] Kisliakov S. V., “Interpolation of $H_p$-spaces: some recent developments”, Israel Math. Conf. Proc., 13, Bar-Ilan Univ., Ramat Gan, 1999, 102–140 | MR | Zbl

[3] Knese G., McCarthy J. E., Moen K., “Unions of Lebesgue spaces and $A_1$ majorants”, Pacific J. Math. (to appear); Preprint, 2013, arXiv: 1302.7315

[4] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I, II, Springer, Berlin etc., 1996 | MR | Zbl

[5] Rubio de Francia J. L., “Operators in Banach lattices and $L^2$-inequalities”, Math. Nachr., 133 (1987), 197–209 | DOI | MR | Zbl

[6] Rutsky D. V., Complex interpolation of couple $(X,BMO)$ for $A_1$-regular lattices, Preprint, 2013, arXiv: 1303.6347

[7] Rutsky D. V., “$A_1$-regularity and boundedness of Calderón–Zygmund operators”, Studia Math., 221:3 (2014), 231–247 | DOI | MR | Zbl

[8] Rutsky D. V., $A_1$-regularity and boundedness of Calderón–Zygmund operators. II, Preprint, 2015, arXiv: 1505.00518

[9] Stein E. M., Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[10] Kislyakov S. V., “O $\mathrm{BMO}$-regulyarnykh reshetkakh izmerimykh funktsii”, Algebra i analiz, 14:2 (2002), 117–135 | MR | Zbl

[11] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, BKhV-Peterburg, SPb., 2004

[12] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR

[13] Lozanovskii G. Ya., “Zamechanie ob odnoi interpolyatsionnoi teoreme Kalderona”, Funkts. anal. i ego pril., 6:4 (1972), 89–90 | MR | Zbl

[14] Rutskii D. V., “$\mathrm{BMO}$-regulyarnost v reshetkakh izmerimykh funktsii na prostranstvakh odnorodnogo tipa”, Algebra i analiz, 23:2 (2011), 248–295 | MR | Zbl

[15] Rutskii D. V., “Vesovoe razlozhenie Kalderona–Zigmunda i nekotorye ego prilozheniya k interpolyatsii”, Zap. nauch. semin. POMI, 424, 2014, 186–200