Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_5_a3, author = {D. A. Kovtonyuk and V. I. Ryazanov}, title = {Prime ends and the {Orlicz--Sobolev} classes}, journal = {Algebra i analiz}, pages = {81--116}, publisher = {mathdoc}, volume = {27}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_5_a3/} }
D. A. Kovtonyuk; V. I. Ryazanov. Prime ends and the Orlicz--Sobolev classes. Algebra i analiz, Tome 27 (2015) no. 5, pp. 81-116. http://geodesic.mathdoc.fr/item/AA_2015_27_5_a3/
[1] Afanaseva E. S., Ryazanov V. I., Salimov R. R., “Ob otobrazheniyakh klassa Orlicha–Soboleva na rimanovykh mnogoobraziyakh”, Ukr. mat. vestn., 8:3 (2011), 319–342 | MR
[2] Vodopyanov S. K., “Otobrazheniya s ogranichennym iskazheniem i s konechnym iskazheniem na gruppakh Karno”, Sib. mat. zh., 40:4 (1999), 764–804 | MR | Zbl
[3] Vodopyanov S. K., Goldshtein V. M., Reshetnyak Yu. G., “O geometricheskikh svoistvakh funktsii s pervymi obobschennymi proizvodnymi”, Uspekhi mat. nauk, 34:1 (1979), 17–65 | MR | Zbl
[4] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[5] Zorich V. A., “Sootvetstvie granits pri $Q$-kvazikonformnykh otobrazheniyakh shara”, Dokl. AN SSSR, 145:6 (1962), 1209–1212 | Zbl
[6] Zorich V. A., “Granichnye svoistva odnogo klassa otobrazhenii v rostranstve”, Dokl. AN SSSR, 153:1 (1963), 23–26 | Zbl
[7] Zorich V. A., “Opredelenie granichnykh elementov posredstvom sechenii”, Dokl. AN SSSR, 164:4 (1965), 736–739 | Zbl
[8] Ignatev A. A., Ryazanov V. I., “Konechnoe srednee kolebanie v teorii otobrazhenii”, Ukr. mat. vestn., 2:3 (2005), 395–417 | MR | Zbl
[9] Kovtonyuk D. A., Petkov I. V., Ryazanov V. I., Salimov R. R., “Granichnoe povedenie i zadacha Dirikhle dlya uravnenii Beltrami”, Algebra i analiz, 25:4 (2013), 101–124 | MR | Zbl
[10] Kovtonyuk D. A., Ryazanov V. I., “K teorii granits prostranstvennykh oblastei”, Tr. IPMM NAN Ukrainy, 13, 2006, 110–120 | MR | Zbl
[11] Kovtonyuk D. A., Ryazanov V. I., “K teorii nizhnikh $Q$-gomeomorfizmov”, Ukr. mat. vestn., 5:2 (2008), 159–184 | MR
[12] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevostyanov E. A., “K teorii klassov Orlicha–Soboleva”, Algebra i analiz, 25:6 (2013), 50–102 | MR | Zbl
[13] Kovtonyuk D. A., Salimov R. R., Sevostyanov E. A., K teorii otobrazhenii klassov Soboleva i Orlicha–Soboleva, ed. Ryazanov V. I., Naukova dumka, Kiev, 2013
[14] Krasnoselskii M. A., Rutitskii Ya. B., Vypuklye funktsii i prostranstva Orlicha, Fizmatgiz, 1958
[15] Lomako T. V., “O rasprostranenii nekotorykh obobschenii kvazikonformnykh otobrazhenii na granitsu”, Ukr. mat. zh., 61:10 (2009), 1329–1337 | MR | Zbl
[16] Mazya V. G., Prostranstva S. L. Soboleva, LGU, L., 1985 | MR
[17] Reshetnyak Yu. G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, Novosibirsk, 1982 | MR
[18] Ryazanov V. I., Salimov R. R., “Slabo ploskie prostranstva i granitsy v teorii otobrazhenii”, Ukr. mat. vestn., 4:2 (2007), 199–234 | MR
[19] Ryazanov V. I., Sevostyanov E. A., “Ravnostepenno nepreryvnye klassy koltsevykh $Q$-gomeomorfizmov”, Sib. mat. zh., 48:6 (2007), 1361–1376 | MR | Zbl
[20] Saks S., Teoriya integrala, IL, M., 1949
[21] Sobolev S. L., Prilozheniya funktsionalnogo analiza v matematicheskoi fizike, LGU, L., 1950
[22] Stepanoff W., “Sur les conditions de l'existence de la differentielle totale”, Mat. sb., 32:3 (1925), 511–527 | Zbl
[23] Suvorov G. D., Obobschennyi printsip “dliny i ploschadi” v teorii otobrazhenii, Naukova dumka, Kiev, 1985 | MR
[24] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR
[25] Shlyk V. A., “O ravenstve $p$-emkosti i $p$-modulya”, Sib. mat. zh., 34:6 (1993), 216–221 | MR | Zbl
[26] Adamowicz T., Björn A., Björn J., Shanmugalingam N., “Prime ends for domains in metric spaces”, Adv. Math., 238 (2013), 459–505 | DOI | MR | Zbl
[27] Birnbaum Z., Orlicz W., “Über die Verallgemeinerungen des Begriffes der zueinauder konjugierten Potenzen”, Studia Math., 3 (1931), 1–67 | Zbl
[28] Calderon A. P., “On the differentiability of absolutely continuous functions”, Riv. Math. Univ. Parma, 2 (1951), 203–213 | MR | Zbl
[29] Caratheodory C., “Über die Begrenzung der einfachzusammenhängender Gebiete”, Math. Ann., 73:3 (1913), 323–370 | DOI | MR | Zbl
[30] Chiarenza F., Frasca M., Longo P., “$W^{2,p}$-solvability of the Dirichlet problem for nondivergence elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 336:2 (1993), 841–853 | MR | Zbl
[31] Collingwood E. F., Lohwator A. J., The theory of cluster sets, Cambridge Tracts in Math., 56, Cambridge Univ. Press, Cambridge, 1966 | MR | Zbl
[32] Freudenthal H., “Enden and Primenden”, Fund. Math., 39 (1952), 189–210 | MR
[33] Gehring F. W., “Rings and quasiconformal mappings in space”, Trans. Amer. Math. Soc., 103:3 (1962), 353–393 | DOI | MR | Zbl
[34] Gehring F. W., Martio O., “Quasiextremal distance domains and extension of quasiconformal mappings”, J. Anal. Math., 45 (1985), 181–206 | DOI | MR | Zbl
[35] Gutlyanskii V., Ryazanov V., Srebro U., Yakubov E., The Beltrami equation. A geometric approach, Developments in Math., 26, Springer, New York, 2012 | DOI | MR | Zbl
[36] Heinonen J., Kilpelainen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Oxford Math. Monogr., Clarendon Press, New York, 1993 | MR | Zbl
[37] Hencl S., Koskela P., Lectures on mappings of finite distortion, Lecture Notes in Math., 2096, Springer, Cham, 2014 | DOI | MR | Zbl
[38] Iwaniec T., Martin G., Geometric function theory and non-linear analysis, Oxford Math. Monogr., Oxford Univ. Press, New York, 2001 | MR
[39] Iwaniec T., Sbordone C., “Riesz transforms and elliptic PDEs with VMO coefficients”, J. Anal. Math., 74 (1998), 183–212 | DOI | MR | Zbl
[40] Iwaniec T., Sverák V., “On mappings with integrable dilatation”, Proc. Amer. Math. Soc., 118:1 (1993), 181–188 | DOI | MR | Zbl
[41] Kaufmann B., “Über die Berandung ebener und räumlicher Gebiete”, Math. Ann., 103:1 (1930), 70–144 | DOI | MR | Zbl
[42] Kovtonyuk D., Petkov I., Ryazanov V., Salimov R. R., “On the Dirichlet problem for the Beltrami equation”, J. Anal. Math., 122:4 (2014), 113–141 | DOI | MR | Zbl
[43] Kovtonyuk D., Petkov I., Ryazanov V., “On the boundary behaviour of solutions to the Beltrami equations”, Complex Var. Elliptic Equ., 58:5 (2013), 647–663 | DOI | MR | Zbl
[44] Kovtonyuk D., Ryazanov V., “On the theory of mappings with finite area distortion”, J. Anal. Math., 104 (2008), 291–306 | DOI | MR
[45] Kovtonyuk D., Ryazanov V., “On the boundary behavior of generalized quasi-isometries”, J. Anal. Math., 115 (2011), 103–119 | DOI | MR | Zbl
[46] Kovtonyuk D. A., Ryazanov V. I., Salimov R. R., Sevost'yanov E. A., “On mappings in the Orlicz–Sobolev classes”, Ann. Univ. Buchar. Math. Ser., 3(LXI):1 (2012), 67–78 | MR | Zbl
[47] Lindelöf E., “Sur un principe general de l'analyse et ses applications á la theorie de la representation conforme”, Acta Soc. Sci. Fenn., 46:4 (1915), 1–35
[48] Maly J., “A simple proof of the Stepanov theorem on differentiability almost everywhere”, Expo. Math., 17 (1999), 59–61 | MR | Zbl
[49] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Sci. Fenn. Math., 448 (1969), 1–40 | MR
[50] Martio O., Ryazanov V., Srebro U., Yakubov E., Moduli in modern mapping theory, Springer Monogr. Math., Springer, New York, 2009 | MR | Zbl
[51] Martio O., Ryazanov V., Vuorinen M., “BMO and injectivity of space quasiregular mappings”, Math. Nachr., 205 (1999), 149–161 | DOI | MR | Zbl
[52] Martio O., Vuorinen M., “Whitney cubes, $p$-capacity and Minkowski content”, Expo. Math., 5:1 (1987), 17–40 | MR | Zbl
[53] Mazurkiewicz S., “Über die Definition der Primenden”, Fund. Math., 26 (1936), 272–279 | Zbl
[54] Mazurkiewicz S., “Recherches sur la theorie des bouts premiers”, Fund. Math., 33 (1945), 177–228 | MR | Zbl
[55] Näkki R., “Prime ends and quasiconformal mappings”, J. Anal. Math., 35 (1979), 13–40 | DOI | MR | Zbl
[56] Ohtsuka M., Extremal length and precise functions, Gakkotosho Co., Tokyo, 2003 | MR | Zbl
[57] Orlicz W., “Über eine gewisse Klasse von Räumen vom Typus B”, Bull. Intern. de l'Acad. Pol. Ser. A, 1932 (1932), 207–220, Cracovie | Zbl
[58] Orlicz W., “Über Räume $(L^M)$”, Bull. Intern. de l'Acad. Pol. Ser. A, 1936 (1936), 93–107 | Zbl
[59] Palagachev D. K., “Quasilinear elliptic equations with VMO coefficients”, Trans. Amer. Math. Soc., 347:7 (1995), 2481–2493 | DOI | MR | Zbl
[60] Rado T., Reichelderfer P. V., Continuous transformations in analysis, Grundlehren Math. Wiss., 75, Springer, Berlin, 1955 | MR
[61] Ragusa M. A., “Elliptic boundary value problem in vanishing mean oscillation hypothesis”, Comment. Math. Univ. Carolin., 40:4 (1999), 651–663 | MR | Zbl
[62] Reimann H. M., Rychener T., Funktionen beschränkter mittlerer oscillation, Lecture Notes in Math., 487, Springer-Verlag, Berlin, 1975 | MR
[63] Rickman S., Quasiregular mappings, Ergeb. Math. Grenzgeb. (3), 26, Springer-Verlag, Berlin, 1993 | MR | Zbl
[64] Ryazanov V., Salimov R., Srebro U., Yakubov E., “On boundary value problems for the Beltrami equations”, Contemp. Math., 591, Amer. Math. Soc., Providence, RI, 2013, 211–242 | DOI | MR | Zbl
[65] Ryazanov V., Sevost'yanov E., “Equicontinuity of mappings quasiconformal in the mean”, Ann. Acad. Sci. Fenn. Math., 36 (2011), 231–244 | DOI | MR | Zbl
[66] Ryazanov V., Srebro U., Yakubov E., “On ring solutions of Beltrami equation”, J. Anal. Math., 96 (2005), 117–150 | DOI | MR | Zbl
[67] Ryazanov V., Srebro U., Yakubov E., “To strong ring solutions of the Beltrami equations”, Uzbek. Math. J., 2009, no. 1, 127–137 | MR
[68] Ryazanov V., Srebro U., Yakubov E., “On strong solutions of the Beltrami equations”, Complex Var. Elliptic Equ., 55:1–3 (2010), 219–236 | DOI | MR | Zbl
[69] Ryazanov V., Srebro U., Yakubov E., “Integral conditions in the theory of the Beltrami equations”, Complex Var. Elliptic Equ., 57:12 (2012), 1247–1270 | DOI | MR | Zbl
[70] Ryazanov V., Srebro U., Yakubov E., “Integral conditions in the mapping theory”, Ukr. mat. vestn., 7:1 (2010), 73–87 | MR
[71] Sarason D., “Functions of vanishing mean oscillation”, Trans. Amer. Math. Soc., 207 (1975), 391–405 | DOI | MR | Zbl
[72] Ursell H. D., Young L. C., Remarks on the theory of prime ends, Mem. Amer. Mat. Soc., 1951, no. 3, 1951, 29 pp. | MR | Zbl
[73] Vasil'ev A., Moduli of families of curves for conformal and quasiconformal mappings, Lecture Notes in Math., 1788, Springer-Verlag, Berlin, 2002 | DOI | MR | Zbl
[74] Väisälä J., Lectures on $n$-dimensional quasiconformal mappings, Lecture Notes in Math., 229, Springer-Verlag, Berlin, 1971 | MR | Zbl
[75] Vuorinen M., Conformal geometry and quasiregular mappings, Lecture Notes in Math., 1319, Springer-Verlag, Berlin, 1988 | MR | Zbl
[76] Whyburn G. Th., Analytic topology, Amer. Math. Soc. Collog. Publ., 28, Amer. Math. Soc., New York, 1942 | MR | Zbl
[77] Wilder R. L., Topology of manifolds, Amer. Math. Soc. Collog. Publ., 3, Amer. Math. Soc., New York, 1949 | MR
[78] Zaanen A. C., Linear analysis. Measure and integral, Banach and Hilbert space, linear integral equations, Noordhoff N. V., Groningen, 1953 | MR
[79] Ziemer W. P., “Extremal length and conformal capacity”, Trans. Amer. Math. Soc., 126:3 (1967), 460–473 | DOI | MR | Zbl