Haar negligibility of positive cones in Banach spaces
Algebra i analiz, Tome 27 (2015) no. 5, pp. 32-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Haar negligibility of the positive cone associated with a basic sequence is discussed in the case of a separable Banach space. In particular, it is shown that, up to equivalence, the canonical basis of $c_0$ is the only normalized subsymmetric unconditional basic sequence whose positive cone is not Haar null, and the only normalized unconditional basic sequence whose positive cone contains a translate of every compact set. It is also proved that an unconditional basic sequence with a non-Haar null positive cone must be $c_0$-saturated in a very strong sense, and that every quotient of the space generated by such a sequence is $c_0$-saturated.
Keywords: Haar negligibility, positive cone, Schauder base, Gauss negligibility.
@article{AA_2015_27_5_a1,
     author = {J. Esterle and \'E. Matheron and P. Moreau},
     title = {Haar negligibility of positive cones in {Banach} spaces},
     journal = {Algebra i analiz},
     pages = {32--68},
     publisher = {mathdoc},
     volume = {27},
     number = {5},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_5_a1/}
}
TY  - JOUR
AU  - J. Esterle
AU  - É. Matheron
AU  - P. Moreau
TI  - Haar negligibility of positive cones in Banach spaces
JO  - Algebra i analiz
PY  - 2015
SP  - 32
EP  - 68
VL  - 27
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_5_a1/
LA  - en
ID  - AA_2015_27_5_a1
ER  - 
%0 Journal Article
%A J. Esterle
%A É. Matheron
%A P. Moreau
%T Haar negligibility of positive cones in Banach spaces
%J Algebra i analiz
%D 2015
%P 32-68
%V 27
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_5_a1/
%G en
%F AA_2015_27_5_a1
J. Esterle; É. Matheron; P. Moreau. Haar negligibility of positive cones in Banach spaces. Algebra i analiz, Tome 27 (2015) no. 5, pp. 32-68. http://geodesic.mathdoc.fr/item/AA_2015_27_5_a1/

[1] Albiac F., Kalton N.|J., Topics in Banach space theory, Grad. Texts in Math., 233, Springer, New York, 2006 | MR

[2] Benyamini Y., Lindenstrauss J., Geometric nonlinear functional analysis, Amer. Math. Soc. Colloq. Publ., 48, Amer. Math. Soc., Providence, RI, 2000 | MR | Zbl

[3] Bogachev V. I., Gaussian mesures, Math. Surveys Monogr., 62, Amer. Math. Soc., Providence, RI, 1998 | DOI | MR

[4] Borwein J., Noll D., “Second order differentiability of convex functions in Banach spaces”, Trans. Amer. Math. Soc., 342:1 (1994), 43–81 | DOI | MR | Zbl

[5] Bourgain J., Tzafriri L., “On a problem of Kadison and Singer”, J. Reine Angew. Math., 420 (1991), 1–43 | MR | Zbl

[6] Probability distributions in Banach spaces, Reidel, Dordrecht, 1987 | MR

[7] Christensen J. P. R., “On sets of Haar measure zero in abelian Polish groups”, Israel J. Math., 13 (1972), 255–260 | DOI | MR

[8] Christensen J. P. R., Topology and Borel structures, North-Holland Math. Stud., 10, North-Holland Publ. Co., Amsterdam–London, 1974 | MR

[9] Csörnyei M., “Aronszajn null and Gaussian null sets coincide”, Israel J. Math., 111 (1999), 191–201 | DOI | MR | Zbl

[10] Gasparis I., “New examples of $c_0$-saturated Banach spaces. II”, J. Funct. Anal., 256:11 (2009), 3830–3840 | DOI | MR | Zbl

[11] Godefroy G., Kalton N. J., Lancien G., “Subspaces of $c_0(\mathbb N)$ and Lipschitz isomorphisms”, Geom. Funct. Anal., 10:4 (2000), 798–820 | DOI | MR | Zbl

[12] Hunt B. R., Sauer T., Yorke J. A., “Prevalence: a translation invariant “almost every” on infinite-dimensional spaces”, Bull. Amer. Math. Soc. (N.S.), 27:2 (1992), 217–238 | DOI | MR | Zbl

[13] Lefèvre P., Matheron É., Primot A., “Smoothness, asymptotic smoothness and the Blum–Hanson property”, Israel J. Math. (to appear)

[14] Leung D. H., “On $c_0$-saturated Banach spaces”, Illinois J. Math., 39:1 (1995), 15–29 | MR | Zbl

[15] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. I, Ergeb. Math. Grenzgeb., 92, Sequence spaces, Springer-Verlag, Berlin, 1977 | MR | Zbl

[16] Matouskova E., “Convexity and Haar null sets”, Proc. Amer. Math. Soc., 125:6 (1997), 1793–1799 | DOI | MR | Zbl

[17] Matouskova E., “The Banach–Saks property and Haar null sets”, Comment. Math. Univ. Carolin., 39:1 (1998), 71–80 | MR | Zbl

[18] Matouskova E., “Translating finite sets into convex sets”, Bull. London Math. Soc., 33:6 (2001), 711–714 | DOI | MR | Zbl

[19] Matouskova E., Stegall C., “A characterization of reflexive Banach spaces”, Proc. Amer. Math. Soc., 124:4 (1996), 1083–1090 | DOI | MR | Zbl

[20] Moreau P., Notions de petitesse, géométrie des espaces de Banach et hypercyclicité, Thèse, Univ. Bordeaux, 2009

[21] Odell E., “On quotients of Banach spaces having shrinking unconditional bases”, Illinois J. Math., 36:4 (1992), 681–695 | MR | Zbl

[22] Phelps R. R., “Gaussian null sets and differentiability of Lipschitz maps on Banach spaces”, Pacific J. Math., 77:2 (1978), 523–531 | DOI | MR | Zbl

[23] Ptak V., “A combinatorial lemma on the existence of convex means and its application to weak compactness”, Proc. Symp. Pure Math., 7, Amer. Math. Soc., Providence, RI, 1963, 437–450 | DOI | MR

[24] Saint-Raymond J., “Quasi-bounded trees and analytic inductions”, Fund. Math., 191:2 (2006), 175–185 | DOI | MR | Zbl

[25] Solecki S., “Haar null and non-dominating sets”, Fund. Math., 170:1–2 (2001), 197–217 | DOI | MR | Zbl

[26] Todorcevic S., Topics in topology, Lecture Notes Math., 1652, Springer-Verlag, Berlin, 1997 | MR | Zbl