Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_3_a3, author = {A. M. Vershik and P. B. Zatitskii and F. V. Petrov}, title = {{\CYRI}{\cyrn}{\cyrt}{\cyre}{\cyrg}{\cyrr}{\cyri}{\cyrr}{\cyro}{\cyrv}{\cyra}{\cyrn}{\cyri}{\cyre} {\cyrv}{\cyri}{\cyrr}{\cyrt}{\cyru}{\cyra}{\cyrl}{\cyrsftsn}{\cyrn}{\cyro} {\cyrn}{\cyre}{\cyrp}{\cyrr}{\cyre}{\cyrr}{\cyrery}{\cyrv}{\cyrn}{\cyrery}{\cyrh} {\cyrf}{\cyru}{\cyrn}{\cyrk}{\cyrc}{\cyri}{\cyrishrt} {\cyrp}{\cyro} {\cyrb}{\cyri}{\cyrs}{\cyrt}{\cyro}{\cyrh}{\cyra}{\cyrs}{\cyrt}{\cyri}{\cyrch}{\cyre}{\cyrs}{\cyrk}{\cyri}{\cyrm} {\cyrm}{\cyre}{\cyrr}{\cyra}{\cyrm} {\cyri} {\cyrf}{\cyro}{\cyrr}{\cyrm}{\cyru}{\cyrl}{\cyra} {\cyrs}{\cyrl}{\cyre}{\cyrd}{\cyra} {\cyrya}{\cyrd}{\cyre}{\cyrr}{\cyrn}{\cyrery}{\cyrh} {\cyro}{\cyrp}{\cyre}{\cyrr}{\cyra}{\cyrt}{\cyro}{\cyrr}{\cyro}{\cyrv}}, journal = {Algebra i analiz}, pages = {66--74}, publisher = {mathdoc}, volume = {27}, number = {3}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a3/} }
TY - JOUR AU - A. M. Vershik AU - P. B. Zatitskii AU - F. V. Petrov TI - Интегрирование виртуально непрерывных функций по бистохастическим мерам и формула следа ядерных операторов JO - Algebra i analiz PY - 2015 SP - 66 EP - 74 VL - 27 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a3/ LA - ru ID - AA_2015_27_3_a3 ER -
%0 Journal Article %A A. M. Vershik %A P. B. Zatitskii %A F. V. Petrov %T Интегрирование виртуально непрерывных функций по бистохастическим мерам и формула следа ядерных операторов %J Algebra i analiz %D 2015 %P 66-74 %V 27 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a3/ %G ru %F AA_2015_27_3_a3
A. M. Vershik; P. B. Zatitskii; F. V. Petrov. Интегрирование виртуально непрерывных функций по бистохастическим мерам и формула следа ядерных операторов. Algebra i analiz, Tome 27 (2015) no. 3, pp. 66-74. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a3/
[1] Birman M. Sh., “Prostaya teorema vlozheniya dlya yader integralnykh operatorov sledovogo klassa v $L^2(\mathbb R^m)$. Primenenie k formule Fredgolma dlya sleda”, Algebra i analiz, 27:2 (2015), 211–217
[2] Vershik A. M., Zatitskii P. B., Petrov F. V., “Virtualnaya nepreryvnost izmerimykh funktsii mnogikh peremennykh i teoremy vlozheniya”, Funkts. anal. i ego pril., 47:3 (2013), 1–11 | DOI | MR | Zbl
[3] Vershik A. M., Zatitskii P. B., Petrov F. V., “Virtualnaya nepreryvnost funktsii mnogikh peremennykh i ee prilozheniya”, Uspekhi mat. nauk, 69:6(420) (2014), 81–114 | DOI | MR | Zbl
[4] Kellerer H. G., “Duality theorems for marginal problems”, Z. Wahrch. Verw. Gebiete, 67:4 (1984), 399–432 | DOI | MR | Zbl
[5] Rachev S. T., Rüschendorf L., Mass transportation problems, v. 1, Probability and its applications, Theory, Springer, New York, 1998 | Zbl
[6] Vershik A. M., “Kak vyglyadit tipichnyi makovskii operator?”, Algebra i analiz, 17:5 (2005), 91–104 | MR | Zbl
[7] Vershik A., “Polymorphisms, Markov processes, and quasi-similarity”, Discrete Contin. Dyn. Syst., 13:5 (2005), 1305–1324 | DOI | MR | Zbl
[8] Levin V. L., “Zadacha o peremeschenii mass v topologicheskom prostranstve i veroyatnostnye mery na proizvedenii dvukh prostranstv, obladayuschie zadannymi marginalnymi merami”, Dokl. AN SSSR, 276:5 (1984), 1059–1064 | MR | Zbl
[9] Shubin M. A., Psevdodifferentsialnye operatory i spektralnaya teoriya, Dobrosvet, M., 2003