Minimizers of one-dimensional parametric variational integrals
Algebra i analiz, Tome 27 (2015) no. 3, pp. 301-310.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two different perturbation methods are discussed to establish the existence of normal or quasinormal minimizers for the boundary-value problem of one-dimensional parametric variational problems.
Keywords: normal and quasinormal minimizers, perturbation methods, parametric variational problems.
@article{AA_2015_27_3_a13,
     author = {S. Hildebrandt},
     title = {Minimizers of one-dimensional parametric variational integrals},
     journal = {Algebra i analiz},
     pages = {301--310},
     publisher = {mathdoc},
     volume = {27},
     number = {3},
     year = {2015},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a13/}
}
TY  - JOUR
AU  - S. Hildebrandt
TI  - Minimizers of one-dimensional parametric variational integrals
JO  - Algebra i analiz
PY  - 2015
SP  - 301
EP  - 310
VL  - 27
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_3_a13/
LA  - en
ID  - AA_2015_27_3_a13
ER  - 
%0 Journal Article
%A S. Hildebrandt
%T Minimizers of one-dimensional parametric variational integrals
%J Algebra i analiz
%D 2015
%P 301-310
%V 27
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_3_a13/
%G en
%F AA_2015_27_3_a13
S. Hildebrandt. Minimizers of one-dimensional parametric variational integrals. Algebra i analiz, Tome 27 (2015) no. 3, pp. 301-310. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a13/

[1] Buttazzo G., Giaquinta M., Hildebrandt S., One-dimensional variational problems, Oxford Lecture Ser. Math. Appl., 15, Clarendon Press, New York, 1998 | MR | Zbl

[2] Dierkes U., Hildebrandt S., Sauvigny F., Minimal surfaces, Grundlehren Math. Wiss., 339, Springer, Berlin, 2010 | MR | Zbl

[3] Hildebrandt S., von der Mosel H., “Plateau's problem for parametric double integrals. I. Existence and regularity in the interior”, Comm. Pure Appl. Math., 56:7 (2003), 926–955 | DOI | MR | Zbl

[4] Hildebrandt S., von der Mosel H., “Conformal representation of surfaces, and Plateau's problem for Cartan functionals”, Riv. Mat. Univ. Parma (7), 4 (2005), 1–43 | MR | Zbl