Minimizers of one-dimensional parametric variational integrals
Algebra i analiz, Tome 27 (2015) no. 3, pp. 301-310
Cet article a éte moissonné depuis la source Math-Net.Ru
Two different perturbation methods are discussed to establish the existence of normal or quasinormal minimizers for the boundary-value problem of one-dimensional parametric variational problems.
Keywords:
normal and quasinormal minimizers, perturbation methods, parametric variational problems.
@article{AA_2015_27_3_a13,
author = {S. Hildebrandt},
title = {Minimizers of one-dimensional parametric variational integrals},
journal = {Algebra i analiz},
pages = {301--310},
year = {2015},
volume = {27},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/AA_2015_27_3_a13/}
}
S. Hildebrandt. Minimizers of one-dimensional parametric variational integrals. Algebra i analiz, Tome 27 (2015) no. 3, pp. 301-310. http://geodesic.mathdoc.fr/item/AA_2015_27_3_a13/
[1] Buttazzo G., Giaquinta M., Hildebrandt S., One-dimensional variational problems, Oxford Lecture Ser. Math. Appl., 15, Clarendon Press, New York, 1998 | MR | Zbl
[2] Dierkes U., Hildebrandt S., Sauvigny F., Minimal surfaces, Grundlehren Math. Wiss., 339, Springer, Berlin, 2010 | MR | Zbl
[3] Hildebrandt S., von der Mosel H., “Plateau's problem for parametric double integrals. I. Existence and regularity in the interior”, Comm. Pure Appl. Math., 56:7 (2003), 926–955 | DOI | MR | Zbl
[4] Hildebrandt S., von der Mosel H., “Conformal representation of surfaces, and Plateau's problem for Cartan functionals”, Riv. Mat. Univ. Parma (7), 4 (2005), 1–43 | MR | Zbl