A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. An application to the Fredholm trace formula
Algebra i analiz, Tome 27 (2015) no. 2, pp. 211-217.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_2_a7,
     author = {M. Sh. Birman},
     title = {A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. {An} application to the {Fredholm} trace formula},
     journal = {Algebra i analiz},
     pages = {211--217},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/}
}
TY  - JOUR
AU  - M. Sh. Birman
TI  - A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. An application to the Fredholm trace formula
JO  - Algebra i analiz
PY  - 2015
SP  - 211
EP  - 217
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/
LA  - ru
ID  - AA_2015_27_2_a7
ER  - 
%0 Journal Article
%A M. Sh. Birman
%T A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. An application to the Fredholm trace formula
%J Algebra i analiz
%D 2015
%P 211-217
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/
%G ru
%F AA_2015_27_2_a7
M. Sh. Birman. A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. An application to the Fredholm trace formula. Algebra i analiz, Tome 27 (2015) no. 2, pp. 211-217. http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/

[1] Gokhberg I. G., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965

[2] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010

[3] Birman M. Sh., Entina S. B., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 401–430 | MR | Zbl

[4] Birman M. Sh., Yafaev D. R., “Obschaya skhema v statsionarnoi teorii rasseyaniya”, Probl. mat. fiz., 12, LGU, L., 1987, 89–117 | MR

[5] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl