Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_2_a7, author = {M. Sh. Birman}, title = {A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. {An} application to the {Fredholm} trace formula}, journal = {Algebra i analiz}, pages = {211--217}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/} }
TY - JOUR AU - M. Sh. Birman TI - A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. An application to the Fredholm trace formula JO - Algebra i analiz PY - 2015 SP - 211 EP - 217 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/ LA - ru ID - AA_2015_27_2_a7 ER -
%0 Journal Article %A M. Sh. Birman %T A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. An application to the Fredholm trace formula %J Algebra i analiz %D 2015 %P 211-217 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/ %G ru %F AA_2015_27_2_a7
M. Sh. Birman. A simple embedding theorem for the kernels of integral trace-class operators on $L^2(\mathbb R^m)$. An application to the Fredholm trace formula. Algebra i analiz, Tome 27 (2015) no. 2, pp. 211-217. http://geodesic.mathdoc.fr/item/AA_2015_27_2_a7/
[1] Gokhberg I. G., Krein M. G., Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov, Nauka, M., 1965
[2] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Lan, SPb., 2010
[3] Birman M. Sh., Entina S. B., “Statsionarnyi podkhod v abstraktnoi teorii rasseyaniya”, Izv. AN SSSR. Ser. mat., 31:2 (1967), 401–430 | MR | Zbl
[4] Birman M. Sh., Yafaev D. R., “Obschaya skhema v statsionarnoi teorii rasseyaniya”, Probl. mat. fiz., 12, LGU, L., 1987, 89–117 | MR
[5] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl