Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_2_a6, author = {V. A. Sloushch}, title = {Discrete spectrum of the periodic {Schr\"odinger} operator with a~variable metric perturbed by a~nonnegative rapidly decaying potential}, journal = {Algebra i analiz}, pages = {196--210}, publisher = {mathdoc}, volume = {27}, number = {2}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_2_a6/} }
TY - JOUR AU - V. A. Sloushch TI - Discrete spectrum of the periodic Schr\"odinger operator with a~variable metric perturbed by a~nonnegative rapidly decaying potential JO - Algebra i analiz PY - 2015 SP - 196 EP - 210 VL - 27 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2015_27_2_a6/ LA - ru ID - AA_2015_27_2_a6 ER -
%0 Journal Article %A V. A. Sloushch %T Discrete spectrum of the periodic Schr\"odinger operator with a~variable metric perturbed by a~nonnegative rapidly decaying potential %J Algebra i analiz %D 2015 %P 196-210 %V 27 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/AA_2015_27_2_a6/ %G ru %F AA_2015_27_2_a6
V. A. Sloushch. Discrete spectrum of the periodic Schr\"odinger operator with a~variable metric perturbed by a~nonnegative rapidly decaying potential. Algebra i analiz, Tome 27 (2015) no. 2, pp. 196-210. http://geodesic.mathdoc.fr/item/AA_2015_27_2_a6/
[1] Birman M. Sh., “Diskretnyi spektr periodicheskogo operatora Shrëdingera, vozmuschennogo ubyvayuschim potentsialom”, Algebra i analiz, 8:1 (1996), 3–20 | MR | Zbl
[2] Alama S., Deift P. A., Hempel R., “Eigenvalue branches of the schrödinger operator $H-\lambda W$ in a Gap of $\sigma(H)$”, Comm. Math. Phys., 121 (1989), 291–321 | DOI | MR | Zbl
[3] Birman M. Sh., “Discrete spectrum of the periodic Schrödinger operator for non-negative perturbations”, Mathematical Results in Quantum Mechanics (Blossin, 1993), Oper. Theory Adv. Appl., 70, Birkhauser, Basel, 1994, 3–7 | DOI | MR | Zbl
[4] Birman M. Sh., Sloushch V. A., “Discrete spectrum of the periodic schrodinger operator with a variable metric perturbed by a nonnegative potential”, Math. Model. Nat. Phenom., 5:4 (2010), 32–53 | DOI | MR | Zbl
[5] Slousch V. A., “Otsenka tipa Tsvikelya kak sledstvie nekotorykh svoistv teplovogo yadra”, Algebra i analiz, 25:5 (2013), 173–201 | MR | Zbl
[6] Slousch V. A., “Priblizhennoe kommutirovanie ubyvayuschego potentsiala i funktsii ot ellipticheskogo operatora”, Algebra i analiz, 26:5 (2014), 215–227
[7] Rid M., Saimon B., Metody sovremennoi matematicheskoi fiziki, v. 4, Analiz operatorov, Mir, M., 1982 | MR
[8] Skriganov M. M., “Geometricheskie i arifmeticheskie metody v spektralnoi teorii mnogomernykh periodicheskikh operatorov”, Tr. Mat. in-ta RAN, 171, 1985, 3–122 | MR | Zbl
[9] Birman M. Sh., “The discrete spectrum in gaps of the perturbed periodic Schrödinger operator. I. Regular perturbations”, Boundary Value Problems, Schrödinger Operators, Deformation Quantization, Math. Top., 8, Akademie Verlag, Berlin, 1995, 334–352 | MR | Zbl
[10] Birman M. Sh., “Discrete spectrum in the gaps of a continuous one for perturbation with large coupling constant”, Estimates and Asimptotics for Discrete Spectra of Integral and Differential Equations (Leningrad, 1989–1990), Adv. Soviet Math., 7, Amer. Math. Soc., Providence, RI, 1991, 57–73 | MR
[11] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, 2-e izd., ispr. i dop., Lan, SPb., 2010
[12] Birman M. Sh., Solomyak M. Z., “Otsenki singulyarnykh chisel integralnykh operatorov”, Uspekhi mat. nauk, 32:1 (1977), 17–84 | MR | Zbl
[13] Birman M. Sh., Solomyak M. Z., “Kompaktnye operatory so stepennoi asimptotikoi singulyarnykh chisel”, Zap. nauch. semin. LOMI, 126, 1983, 21–30 | MR | Zbl