Bounded remainder sets with respect to toric exchange transformations
Algebra i analiz, Tome 27 (2015) no. 2, pp. 96-131.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_2_a4,
     author = {V. G. Zhuravlev},
     title = {Bounded remainder sets with respect to toric exchange transformations},
     journal = {Algebra i analiz},
     pages = {96--131},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_2_a4/}
}
TY  - JOUR
AU  - V. G. Zhuravlev
TI  - Bounded remainder sets with respect to toric exchange transformations
JO  - Algebra i analiz
PY  - 2015
SP  - 96
EP  - 131
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_2_a4/
LA  - ru
ID  - AA_2015_27_2_a4
ER  - 
%0 Journal Article
%A V. G. Zhuravlev
%T Bounded remainder sets with respect to toric exchange transformations
%J Algebra i analiz
%D 2015
%P 96-131
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_2_a4/
%G ru
%F AA_2015_27_2_a4
V. G. Zhuravlev. Bounded remainder sets with respect to toric exchange transformations. Algebra i analiz, Tome 27 (2015) no. 2, pp. 96-131. http://geodesic.mathdoc.fr/item/AA_2015_27_2_a4/

[1] Athreya J., Boshernitzan M., “Ergodic properties of compositions of interval exchange maps and rotations”, Nonlinearity, 26:2 (2013), 417–423 | DOI | MR | Zbl

[2] Haller H., “Rectangle exchange transformations”, Monatsh. Math., 91:3 (1981), 215–232 | DOI | MR | Zbl

[3] Hecke E., “Über analytische Funktionen und die Verteilung von Zahlen mod. eins”, Abh. Math. Sem. Univ. Hamburg., 1:1 (1921), 54–76 | DOI | MR | Zbl

[4] Ferenczi S., “Bounded remaider sets”, Acta Arith., 61:4 (1992), 319–326 | MR | Zbl

[5] Liardet P., “Regularities of distribution”, Compositio Math., 61:3 (1987), 267–293 | MR | Zbl

[6] Oren I., “Admissible functions with multiple discontinuities”, Proc. Special Sem. Topology (Mexico City, 1980/1981), v. 1, Univ. Nac. Autónoma México, Mexico City, 1981, 217–230 | MR

[7] Rauzy G., “Ensembles à restes bornés”, Sem. Number Theory, 1983–1984 (Talence, 1983/1984), Univ. Bordeaux, Talence, 1984, Exp. No 24 | MR | Zbl

[8] Szüsz R., “Über die Verteilung der Vielfachen einer komplexen Zahl nach dem Modul des Einheitsquadrats”, Acta Math. Acad. Sci. Hungar., 5 (1954), 35–39 | DOI | MR | Zbl

[9] Weyl H., “Über die Gleichverteilung von Zahlen mod Eins”, Math. Ann., 77:3 (1916), 313–352 | DOI | MR | Zbl

[10] Voronoi G. F., Sobranie sochinenii, v. 2, Izd-vo AN USSR, Kiev, 1952

[11] Zhuravlev V. G., “Razbieniya Rozi i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 322, 2005, 83–106 | MR | Zbl

[12] Zhuravlev V. G., “Mnogomernaya teorema Gekke o raspredelenii drobnykh dolei”, Algebra i analiz, 24:1 (2012), 95–130 | MR | Zbl

[13] Zhuravlev V. G., “Perekladyvayuschiesya toricheskie razvertki i mnozhestva ogranichennogo ostatka”, Zap. nauch. semin. POMI, 392, 2011, 95–145 | MR

[14] Zhuravlev V. G., “Moduli toricheskikh razbienii na mnozhestva ogranichennogo ostatka i sbalansirovannye slova”, Algebra i analiz, 24:4 (2012), 97–136 | MR | Zbl

[15] Zhuravlev V. G., “Mnogogranniki ogranichennogo ostatka”, Matematika i informatika, K 75-letiyu so dnya rozhd. A. A. Karatsuby, v. 1, Sovr. probl. matem., 16, MIAN, M., 2012, 82–102 | DOI | Zbl

[16] Zhuravlev V. G., “Mnogotsvetnye dinamicheskie razbieniya torov na mnozhestva ogranichennogo ostatka”, Izv. RAN. Ser. mat., 79:5 (2015), 65–102 | DOI

[17] Kozlov V. V., “Vesovye srednie, ravnomernoe raspredelenie i strogaya ergodichnost”, Uspekhi mat. nauk, 60:6 (2005), 115–138 | DOI | MR | Zbl

[18] Fedorov E. S., Nachala ucheniya o figurakh, Izd-vo AN SSSR, M., 1953 | MR