Solution in the H\"older spaces of the free boundary problems arising in combustion theory
Algebra i analiz, Tome 27 (2015) no. 2, pp. 42-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_2_a2,
     author = {G. I. Bizhanova},
     title = {Solution in the {H\"older} spaces of the free boundary problems arising in combustion theory},
     journal = {Algebra i analiz},
     pages = {42--82},
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_2_a2/}
}
TY  - JOUR
AU  - G. I. Bizhanova
TI  - Solution in the H\"older spaces of the free boundary problems arising in combustion theory
JO  - Algebra i analiz
PY  - 2015
SP  - 42
EP  - 82
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_2_a2/
LA  - ru
ID  - AA_2015_27_2_a2
ER  - 
%0 Journal Article
%A G. I. Bizhanova
%T Solution in the H\"older spaces of the free boundary problems arising in combustion theory
%J Algebra i analiz
%D 2015
%P 42-82
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_2_a2/
%G ru
%F AA_2015_27_2_a2
G. I. Bizhanova. Solution in the H\"older spaces of the free boundary problems arising in combustion theory. Algebra i analiz, Tome 27 (2015) no. 2, pp. 42-82. http://geodesic.mathdoc.fr/item/AA_2015_27_2_a2/

[1] Stefan J., “Über einige Probleme der Theorie der Wärmeleitung”, Sitzber. Wien. Akad. Mat. Naturw., 98:11 (1888), 473–484 | Zbl

[2] Florin V. A., “Uplotnenie zemlyanoi sredy i filtratsiya pri peremennoi poristosti s uchetom vliyaniya svyazannoi vody”, Izv. AN SSSR. OTN, 1951, no. 1, 1625–1649

[3] Visintin A., Models of phase transitions, Progress Nonlinear Differential Equations, 28, Birkhauser, Boston, MA, 1996 | MR | Zbl

[4] Avdonin N. A., Matematicheskoe opisanie protsessov kristallizatsii, Zinatne, Riga, 1980 | MR

[5] Caginalp G., “Conserved-phase field system: Implication for kinetic undercooling”, Phis. Rev. B, 38 (1988), 789–791 | DOI

[6] Visintin A., Differential models of hysteresis, Appl. Math. Sci., 111, Springer, 1994 | DOI | MR | Zbl

[7] Williams F. A., Combustion theory, 2-nd ed., Benjamin/Cummnings, Menlo Park, California, 1985

[8] Muskat M., The flow of homogeneous fluids through porous media, Michigan, 1937

[9] Verigin N. N., “Nagnetanie vyazhuschikh rastvorov v gornye porody v tselyakh povysheniya prochnosti i vodonepronitsaemosti osnovanii gidrotekhnicheskikh sooruzhenii”, Izv. AN SSSR. OTN, 1952, no. 5, 674–687

[10] Danilyuk I. I., “O protsesse kristallizatsii pri obrazovanii garnisazha”, Mat. fizika, 17, Naukova dumka, Kiev, 1975, 99–111

[11] Leibenzon L. S., “K voprosu o zatverdevanii zemnogo shara iz pervonachalnogo rasplavlennogo sostoyaniya”, Izv. AN SSSR. Ser. Geogr. Geofiz., 1939, no. 6, 625–660

[12] Tikhonov A. N., Lyubimova E. A., Vlasov V. K., “Ob evolyutsii zon proplavleniya v termicheskoi istorii Zemli”, Dokl. AN CSSR, 188:2 (1969), 338–342

[13] Lyubimova E. A., Termika Zemli i Luny, Nauka, M., 1968

[14] Correra S., Fasano A., Fusi L., Primicerio M., “Modelling wax diffusion in crude oils: The cold finger device”, Appl. Math. Modelling, 31 (2007), 2286–2298 | DOI | Zbl

[15] Friedman A., “Conservation laws in mathematical biology”, Discrete Contin. Dyn. Syst., 32:9 (2012), 3081–3097 | DOI | MR | Zbl

[16] Bazaliy B. V., Friedman A., “A free boundary problem for an elliptic-parabolic system: Application to a model of tumor growth”, Comm. Partial Differential Equations, 28 (2003), 517–560 | DOI | MR | Zbl

[17] Hanzawa E., “Classical solutions of the Stefan problem”, Tohoku Math. J., 33:3 (1981), 297–335 | DOI | MR | Zbl

[18] Bizhanova G. I., Solonnikov V.|A., “O zadachakh so svobodnymi granitsami dlya parabolicheskikh uravnenii”, Algebra i analiz, 12:6 (2000), 98–139 | MR | Zbl

[19] Petrosyan A., “On existence and uniqueness in a free boundary problem from combustion”, Comm. Partial Differential Equations, 27:3–4 (2007), 763–789 | MR

[20] Poghosyan M., Teymurazyan R., “One phase parabolic free boundary problem in a convex ring”, J. Contemp. Math. Anal., 44:3 (2009), 192–204 | DOI | MR | Zbl

[21] Kim I. C., “A free boundary problem arising in flame propagation”, J. Differential Equations, 191:2 (2003), 470–489 | DOI | MR | Zbl

[22] To T., “A free boundary problem for the evolution $p$-Laplacian equation with a combustion boundary condition”, Calc. Var. Partial Differential Equations, 35:2 (2009), 239–262 | DOI | MR | Zbl

[23] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964

[24] Bizhanova G. I., Rodrigues J. F., “Classical solutions to parabolic systems with free boundary of Stefan type”, Adv. Differential Equations, 10:12 (2005), 1345–1388 | MR | Zbl

[25] Bizhanova G. I., “On the Stefan problem with a small parameter”, Parabolic and Navier–Stokes Equations, Pt. 1, Banach Center Publ., 81, Polish. Acad. Sci. Inst. Math., Warsaw, 2008, 43–63 | DOI | MR | Zbl

[26] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[27] Bizhanova G. I., Solonnikov V. A., “O razreshimosti nachalno-kraevoi zadachi dlya parabolicheskogo uravneniya vtorogo poryadka s proizvodnoi po vremeni v granichnom uslovii”, Algebra i analiz, 5:1 (1993), 109–142 | MR | Zbl

[28] Bizhanova G. I., “O razreshimosti mnogomernykh odnofaznykh zadach so svobodnymi granitsami”, Izv. Ministerstva nauki i Akad. nauk Resp. Kazakhstan. Ser. fiz.-mat., 1996, no. 5, 28–39 | MR

[29] Bizhanova G. I., “Issledovanie razreshimosti v vesovom gelderovskom prostranstve funktsii mnogomernykh dvukhfazykh zadach Stefana i nestatsionarnoi filtratsii Florina dlya parabolicheskikh uravnenii vtorogo poryadka”, Zap. nauch. semin. POMI, 213, 1994, 14–47 | MR | Zbl

[30] Bizhanova G. I., “Reshenie v vesovom gelderovskom prostranstve funktsii mnogomernykh dvukhfaznykh zadach Stefana i Florina dlya parabolicheskikh uravnenii vtorogo poryadka v ogranichennoi oblasti”, Algebra i analiz, 7:2 (1995), 46–76 | MR | Zbl