Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2015_27_1_a8, author = {A. Petrunin and A. Yashinski}, title = {Piecewise distance preserving maps}, journal = {Algebra i analiz}, pages = {218--247}, publisher = {mathdoc}, volume = {27}, number = {1}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/AA_2015_27_1_a8/} }
A. Petrunin; A. Yashinski. Piecewise distance preserving maps. Algebra i analiz, Tome 27 (2015) no. 1, pp. 218-247. http://geodesic.mathdoc.fr/item/AA_2015_27_1_a8/
[1] Akopyan A. V., PL-analog teoremy Nesha–Keipera, Odinnadtsatyi konkurs Mëbiusa, , 2007 http://www.moebiuscontest.ru/files/2007/akopyan.pdf
[2] Akopyan A. V., Tarasov A. S., “Konstruktivnoe dokazatelstvo teoremy Kirshbrauna”, Mat. zametki, 84:5 (2008), 781–784 | DOI | MR | Zbl
[3] Alexander R., “Lipschitzian mappings and total mean curvature of polyhedral surfaces. I”, Trans. Amer. Math. Soc., 288:2 (1985), 661–678 | DOI | MR | Zbl
[4] Aleksandrov A. D., Vypuklye mnogogranniki, GITTL, M., 1950 | MR
[5] Arnold V. I., Zadachi Arnolda, Fazis, M., 2000 | MR
[6] Bezdek K., Connelly R., “Pushing disks apart – the Kneser–Poulsen conjecture in the plane”, J. Reine Angew. Math., 553 (2002), 221–236 | MR | Zbl
[7] Brehm U., “Extensions of distance reducing mappings to piecewise congruent mappings on $\mathbb R^m$”, J. Geom., 16:2 (1981), 187–193 | DOI | MR | Zbl
[8] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyut. issledovanii, Moskva–Izhevsk, 2004
[9] Burago Yu. D., Zalgaller V. A., “Realizatsiya razvertok v vide mnogogrannikov”, Vestn. Leningr. un-ta. Ser. mat., mekh., astronom., 1960, no. 7, 66–80 | MR | Zbl
[10] Burago Yu. D., Zalgaller V. A., “Izometricheskie kusochno-lineinye pogruzheniya dvumernykh mnogoobrazii s poliedralnoi metrikoi v $\mathbb R^3$”, Algebra i analiz, 7:3 (1995), 76–95 | MR | Zbl
[11] Valentine F. A., “A Lipschitz condition preserving extension for a vector function”, Amer. J. Math., 67:1 (1945), 83–93 | DOI | MR | Zbl
[12] Gromov M., Differentsialnye sootnosheniya s chastnymi proizvodnymi, Mir, M., 1990 | MR
[13] Dantser L., Gryunbaum B., Kli V., Teorema Khelli i ee primeneniya, Mir, M., 1968 | MR
[14] Zalgaller V. A., “Izometricheskie vlozheniya poliedrov”, Dokl. AN SSSR, 123:4 (1958), 599–601 | MR | Zbl
[15] Kirszbraun M. D., “Über die zusammenziehende und Lipschitzsche Transformationen”, Fund. Math., 22 (1934), 77–108 | Zbl
[16] Krat S., Approximation problems in length geometry, Thesis, Pennsyl. State. Univ., 2005
[17] Lang R. J., Origami design secrets. Mathematical methods for an ancient art, CRC Press, Boca Raton, FL, 2012 | MR
[18] Mishachev N. M., Eliashberg Ya. M., Vvedenie v $h$-printsip, MTsNMO, M., 2004
[19] Montroll J., Lang R. J., Origami sea life, Dover Publ., New York, 1991
[20] Petrunin A., “Ploskoe origami i postroeniya”, Kvant, 2008, no. 1, 38–40
[21] Petrunin A., “Ploskoe origami i dlinnyi rubl”, Zadachi Sankt-Peterburgskoi olimpiady shkolnikov po matematike, SPb., 2008, 116–125; arXiv: 1004.0545
[22] Petrunin A., “Vnutrennie izometrii v evklidovo prostranstvo”, Algebra i analiz, 22:5 (2010), 140–153 | MR | Zbl
[23] Petrunin A., Yashinski A., Lectures on piecewise distance preserving maps, arXiv: 1405.6606
[24] Saraf S., “Acute and nonobtuse triangulations of polyhedral surfaces”, European J. Combin., 30:4 (2009), 833–840 | DOI | MR | Zbl
[25] Tabachnikov S. L., Fuks D. B., Matematicheskii divertisment, MTsNMO, M., 2011
[26] Tarasov A. S., “Reshenie zadachi Arnolda ‘o myatom ruble’ ”, Chebyshevskii sb., 5:1 (2004), 174–187 | MR | Zbl
[27] Hull T. C., “Solving cubics with creases: the work of Beloch and Lill”, Amer. Math. Monthly, 118:4 (2011), 307–315 | DOI | MR | Zbl
[28] Yaschenko I., “Make your dollar bigger now”, Math. Intelligencer, 20:2 (1998), 38–40