On minimal Leibniz algebras with nilpotent commutator subalgebra
Algebra i analiz, Tome 27 (2015) no. 1, pp. 178-193.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_1_a6,
     author = {S. M. Ratseev},
     title = {On minimal {Leibniz} algebras with nilpotent commutator subalgebra},
     journal = {Algebra i analiz},
     pages = {178--193},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_1_a6/}
}
TY  - JOUR
AU  - S. M. Ratseev
TI  - On minimal Leibniz algebras with nilpotent commutator subalgebra
JO  - Algebra i analiz
PY  - 2015
SP  - 178
EP  - 193
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_1_a6/
LA  - ru
ID  - AA_2015_27_1_a6
ER  - 
%0 Journal Article
%A S. M. Ratseev
%T On minimal Leibniz algebras with nilpotent commutator subalgebra
%J Algebra i analiz
%D 2015
%P 178-193
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_1_a6/
%G ru
%F AA_2015_27_1_a6
S. M. Ratseev. On minimal Leibniz algebras with nilpotent commutator subalgebra. Algebra i analiz, Tome 27 (2015) no. 1, pp. 178-193. http://geodesic.mathdoc.fr/item/AA_2015_27_1_a6/

[1] Blokh A. M., “Ob odnom obobschenii ponyatiya algebry Li”, Dokl. AN SSSR, 165:3 (1965), 471–473 | Zbl

[2] Loday J., Quillen D., “Cyclic homology and the Lie algebra homology of matrices”, Comment. Math. Helw., 59:4 (1984), 565–591 | DOI | MR | Zbl

[3] Loday J., “Une version non commutative des alg'ebres de Lie: les alg'ebres de Leibniz”, Enseign. Math. (2), 39:3–4 (1993), 269–293 | MR | Zbl

[4] Bakhturin Yu. A., Tozhdestva v algebrakh Li, Nauka, M., 1985 | MR

[5] Gulden Ya., Dzhekson D., Perechislitelnaya kombinatorika, Nauka, M., 1990 | MR

[6] Petrogradskii V. M., “O tipakh sverkheksponentsialnogo rosta tozhdestv v PI-algebrakh Li”, Fundam. i prikl. mat., 1:4 (1995), 989–1007 | MR | Zbl

[7] Petrogradskii V. M., “Rost polinilpotentnykh mnogoobrazii algebr Li i bystro rastuschie tselye funktsii”, Mat. sb., 188:6 (1997), 119–138 | DOI | MR | Zbl

[8] Ratseev S. M., “Rost nekotorykh mnogoobrazii algebr Leibnitsa”, Vestnik Sam. gos. un-ta. Estestv. ser., 2006, no. 6/1, 70–77 | MR | Zbl

[9] Mishchenko S., Valenti A., “A Leibniz variety with almost polynomial growth”, J. Pure Appl. Algebra, 202:1–3 (2005), 82–101 | DOI | MR | Zbl

[10] Ratseev S. M., “O roste nekotorykh assotsiativnykh algebr i algebr Leibnitsa”, Vestnik Sam. gos. un-ta. Estestv. ser., 2008, no. 6, 177–184

[11] Grekhem R., Knut D., Patashnik O., Konkretnaya matematika. Osnovanie informatiki, Mir, M., 1998

[12] Abanina L. E., Ratseev S. M., “Mnogoobrazie algebr Leibnitsa, svyazannoe so standartnymi tozhdestvami”, Vestnik Sam. gos. un-ta. Estestv. ser., 2005, no. 6, 36–50 | MR | Zbl

[13] Giambruno A., Mattina D. La., Petrogradsky V. M., “Matrix algebras of polynomial codimention growth”, Israel J. Math., 158 (2007), 367–378 | DOI | MR | Zbl

[14] Mattina D. La., “Varieties of almost polynomial growth: classifying their subvarieties”, Manuscripta Math., 123:2 (2007), 185–203 | DOI | MR | Zbl