Estimation of intermediate derivatives and theorems of Bang type.~I
Algebra i analiz, Tome 27 (2015) no. 1, pp. 23-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{AA_2015_27_1_a1,
     author = {R. A. Gaisin},
     title = {Estimation of intermediate derivatives and theorems of {Bang} {type.~I}},
     journal = {Algebra i analiz},
     pages = {23--48},
     publisher = {mathdoc},
     volume = {27},
     number = {1},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/AA_2015_27_1_a1/}
}
TY  - JOUR
AU  - R. A. Gaisin
TI  - Estimation of intermediate derivatives and theorems of Bang type.~I
JO  - Algebra i analiz
PY  - 2015
SP  - 23
EP  - 48
VL  - 27
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2015_27_1_a1/
LA  - ru
ID  - AA_2015_27_1_a1
ER  - 
%0 Journal Article
%A R. A. Gaisin
%T Estimation of intermediate derivatives and theorems of Bang type.~I
%J Algebra i analiz
%D 2015
%P 23-48
%V 27
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2015_27_1_a1/
%G ru
%F AA_2015_27_1_a1
R. A. Gaisin. Estimation of intermediate derivatives and theorems of Bang type.~I. Algebra i analiz, Tome 27 (2015) no. 1, pp. 23-48. http://geodesic.mathdoc.fr/item/AA_2015_27_1_a1/

[1] Mandelbroit S., Primykayuschie ryady. Regulyarizatsiya posledovatelnostei. Primeneniya, IL, M., 1955

[2] Dynkin E. M., “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala Matematicheskoe programmirovanie i smezhnye voprosy”, Teoriya funktsii i funktsionalnyi analiz, Tr. 7-i zimnei shkoly (Drogobych, 1974), Tsentr. ekonom.-mat. in-t AN SSSR, M., 1976, 40–73 | MR

[3] Mandelbroit S., Kvazianaliticheskie klassy funktsii, ONTI, M.–L., 1937

[4] Gaisin A. M., Kinzyabulatov I. G., “Teorema tipa Levinsona–Schëberga. Primeneniya”, Mat. sb., 199:7 (2008), 41–62 | DOI | MR | Zbl

[5] Dales H. G., Davie A. M., “Quasianalytic Banach function algebras”, J. Functional Analysis, 13:1 (1973), 28–50 | DOI | MR | Zbl

[6] Leontev A. F., Posledovatelnosti polinomov iz eksponent, Nauka, M., 1980 | MR

[7] Andrievskii V. V., Belyi V. N., Dzyadyk V. K., Konformnye invarianty v konstruktivnoi teorii funktsii kompleksnogo peremennogo, Naukova dumka, Kiev, 1998 | MR

[8] Gaier D., Lektsii po teorii approksimatsii v kompleksnoi oblasti, Mir, M., 1986 | MR

[9] Leontev A. F., Ryady eksponent, Nauka, M., 1976 | MR

[10] Dzyadyk V. K., Vvedenie v teoriyu ravnomernogo priblizheniya funktsii polinomami, Nauka, M., 1977 | MR

[11] Natanson I. P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR

[12] Shabat B. V., Vvedenie v kompleksnyi analiz, Ch. I, Nauka, M., 1976 | MR

[13] Gakhov F. D., Kraevye zadachi, Nauka, M., 1977 | MR

[14] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[15] Hadamard J., “Sur le module maximum d'une fonction et de ses dérivées”, C. R. Séances Soc. Math. France, 41 (1914), 68–72

[16] Carleman T., Les functions quasi analytiques, Paris, 1926

[17] Gorny A., “Contribution á l'étude des fonctions dérivables d'une variable réelle”, Acta Math., 71 (1939), 317–358 | DOI | MR | Zbl

[18] Cartan H., Sur les classes de fonctions définies par des inégalités portan sur leurs dérivées successives, Actual. Sci. Ind., 867, Hermann, Paris, 1940 | MR

[19] Matematicheskii entsiklopedicheskii slovar, Sov. entsiklopediya, M., 1988 | MR

[20] Bang T., Om quasi-analytiske funktioner, Thesis, Copenhagen Univ., 1946 | MR

[21] Zeinstra R. L., Müntz–Szász approximation on curves and area problems for zero sets, Thesis, Amsterdam Univ., 1985

[22] Cohen P. J., “A simple proof of the Denjoy–Carleman theorem”, Amer. Math. Monthly, 75 (1968), 26–31 | DOI | MR | Zbl

[23] Siddiqi J. A., “Non-spanning sequenses of exponentials on rectifiable plane arcs”, Linear and complex analysis, Problem book, Lecture Notes in Math., 1043, Springer-Verlag, Berlin, 1984, 555–556

[24] Gaisin R. A., “Kriterii suschestvovaniya regulyarnoi minoranty nekvazianalitichnosti klassov Karlemana”, Nelineinyi analiz i spektralnye zadachi, Tez. mezhdunar. nauch. konf., Bashkirskii gos. un-t, Ufa, 2013, 44–46

[25] Gaisin R. A., “Kriterii suschestvovaniya regulyarnoi minoranty, ne podchinennoi usloviyu Banga”, Fundamentalnaya matematika i ee prilozheniya v stestvoznanii, Sb. trudov VI Mezhdunar. shkoly-konferentsii dlya studentov, aspirantov i molodykh uchenykh, v. 1, Matematika, Bashkirskii gos. un-t, Ufa, 2013, 48–56