Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line
Algebra i analiz, Tome 26 (2014) no. 6, pp. 198-215.

Voir la notice de l'article provenant de la source Math-Net.Ru

A simple yet complete construction of the inverse problem for the Schrödinger operator on the half-line is presented in terms of the Riemann–Hilbert approach.
Keywords: Schrödinger operator, inverse problem, Riemann–Hilbert problem.
@article{AA_2014_26_6_a9,
     author = {R. Shterenberg and V. Sukhanov},
     title = {Riemann--Hilbert approach to the inverse problem for the {Schr\"odinger} operator on the half-line},
     journal = {Algebra i analiz},
     pages = {198--215},
     publisher = {mathdoc},
     volume = {26},
     number = {6},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a9/}
}
TY  - JOUR
AU  - R. Shterenberg
AU  - V. Sukhanov
TI  - Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line
JO  - Algebra i analiz
PY  - 2014
SP  - 198
EP  - 215
VL  - 26
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/AA_2014_26_6_a9/
LA  - en
ID  - AA_2014_26_6_a9
ER  - 
%0 Journal Article
%A R. Shterenberg
%A V. Sukhanov
%T Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line
%J Algebra i analiz
%D 2014
%P 198-215
%V 26
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/AA_2014_26_6_a9/
%G en
%F AA_2014_26_6_a9
R. Shterenberg; V. Sukhanov. Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line. Algebra i analiz, Tome 26 (2014) no. 6, pp. 198-215. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a9/

[1] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseivaniya”, Uspekhi mat. nauk, 14:4 (1959), 57–119 | MR | Zbl

[2] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[3] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha teorii rasseivaniya, Izd-vo Khark. un-ta, Kharkov, 1960

[4] Shterenberg R. G., Sukhanov V. V., “Zadacha rasseyaniya dlya obyknovennogo differentsialnogo operatora chetvertogo poryadka na poluosi, I. Pryamaya zadacha”, Algebra i analiz, 25:2 (2013), 236–250 | MR

[5] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | DOI | MR | Zbl

[6] Deift P., Zhou X., “Direct and inverse scattering on the line with arbitrary singularities”, Comm. Pure Appl. Math., 44:5 (1991), 485–533 | DOI | MR | Zbl

[7] Levitan B. A., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR | Zbl

[8] Gakhov F.D., Kraevye zadachi, Fizmatgiz, M., 1963 | MR

[9] Vekua N. R., Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970 | MR | Zbl