Voir la notice de l'article provenant de la source Math-Net.Ru
@article{AA_2014_26_6_a9, author = {R. Shterenberg and V. Sukhanov}, title = {Riemann--Hilbert approach to the inverse problem for the {Schr\"odinger} operator on the half-line}, journal = {Algebra i analiz}, pages = {198--215}, publisher = {mathdoc}, volume = {26}, number = {6}, year = {2014}, language = {en}, url = {http://geodesic.mathdoc.fr/item/AA_2014_26_6_a9/} }
TY - JOUR AU - R. Shterenberg AU - V. Sukhanov TI - Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line JO - Algebra i analiz PY - 2014 SP - 198 EP - 215 VL - 26 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/AA_2014_26_6_a9/ LA - en ID - AA_2014_26_6_a9 ER -
R. Shterenberg; V. Sukhanov. Riemann--Hilbert approach to the inverse problem for the Schr\"odinger operator on the half-line. Algebra i analiz, Tome 26 (2014) no. 6, pp. 198-215. http://geodesic.mathdoc.fr/item/AA_2014_26_6_a9/
[1] Faddeev L. D., “Obratnaya zadacha kvantovoi teorii rasseivaniya”, Uspekhi mat. nauk, 14:4 (1959), 57–119 | MR | Zbl
[2] Marchenko V. A., Operatory Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR
[3] Agranovich Z. S., Marchenko V. A., Obratnaya zadacha teorii rasseivaniya, Izd-vo Khark. un-ta, Kharkov, 1960
[4] Shterenberg R. G., Sukhanov V. V., “Zadacha rasseyaniya dlya obyknovennogo differentsialnogo operatora chetvertogo poryadka na poluosi, I. Pryamaya zadacha”, Algebra i analiz, 25:2 (2013), 236–250 | MR
[5] Beals R., Deift P., Tomei C., Direct and inverse scattering on the line, Math. Surveys Monogr., 28, Amer. Math. Soc., Providence, RI, 1988 | DOI | MR | Zbl
[6] Deift P., Zhou X., “Direct and inverse scattering on the line with arbitrary singularities”, Comm. Pure Appl. Math., 44:5 (1991), 485–533 | DOI | MR | Zbl
[7] Levitan B. A., Sargsyan I. S., Vvedenie v spektralnuyu teoriyu. Samosopryazhennye obyknovennye differentsialnye operatory, Nauka, M., 1970 | MR | Zbl
[8] Gakhov F.D., Kraevye zadachi, Fizmatgiz, M., 1963 | MR
[9] Vekua N. R., Sistemy singulyarnykh integralnykh uravnenii i nekotorye granichnye zadachi, Nauka, M., 1970 | MR | Zbl